Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
2aeb589b93
Merge 523583e19e into bf099c3edd 2026-01-15 14:09:01 +00:00
14 changed files with 31 additions and 187 deletions

View File

@ -1,3 +1,2 @@
- For Frigate NVR, never write strings in the frontend directly. Since the project uses `react-i18next`, use `t()` and write the English string in the relevant translations file in `web/public/locales/en`.
- Always conform new and refactored code to the existing coding style in the project.
- Always have a way to test your work and confirm your changes. When running backend tests, use `python3 -u -m unittest`.
Never write strings in the frontend directly, always write to and reference the relevant translations file.
Always conform new and refactored code to the existing coding style in the project.

View File

@ -66,6 +66,8 @@ Some models are labeled as **hybrid** (capable of both thinking and instruct tas
**Recommendation:**
Always select the `-instruct` or documented instruct/tagged variant of any model you use in your Frigate configuration. If in doubt, refer to your model providers documentation or model library for guidance on the correct model variant to use.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/search?c=vision). Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull qwen3-vl:2b-instruct` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
@ -91,7 +93,7 @@ genai:
## Google Gemini
Google Gemini has a [free tier](https://ai.google.dev/pricing) for the API, however the limits may not be sufficient for standard Frigate usage. Choose a plan appropriate for your installation.
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
### Supported Models
@ -112,7 +114,7 @@ To start using Gemini, you must first get an API key from [Google AI Studio](htt
genai:
provider: gemini
api_key: "{FRIGATE_GEMINI_API_KEY}"
model: gemini-2.5-flash
model: gemini-2.0-flash
```
:::note

View File

@ -68,8 +68,8 @@ Fine-tune the LPR feature using these optional parameters at the global level of
- Default: `1000` pixels. Note: this is intentionally set very low as it is an _area_ measurement (length x width). For reference, 1000 pixels represents a ~32x32 pixel square in your camera image.
- Depending on the resolution of your camera's `detect` stream, you can increase this value to ignore small or distant plates.
- **`device`**: Device to use to run license plate detection _and_ recognition models.
- Default: `None`
- This is auto-selected by Frigate and can be `CPU`, `GPU`, or the GPU's device number. For users without a model that detects license plates natively, using a GPU may increase performance of the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation. However, for users who run a model that detects `license_plate` natively, there is little to no performance gain reported with running LPR on GPU compared to the CPU.
- Default: `CPU`
- This can be `CPU`, `GPU`, or the GPU's device number. For users without a model that detects license plates natively, using a GPU may increase performance of the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation. However, for users who run a model that detects `license_plate` natively, there is little to no performance gain reported with running LPR on GPU compared to the CPU.
- **`model_size`**: The size of the model used to identify regions of text on plates.
- Default: `small`
- This can be `small` or `large`.
@ -432,6 +432,6 @@ If you are using a model that natively detects `license_plate`, add an _object m
If you are not using a model that natively detects `license_plate` or you are using dedicated LPR camera mode, only a _motion mask_ over your text is required.
### I see "Error running ... model" in my logs, or my inference time is very high. How can I fix this?
### I see "Error running ... model" in my logs. How can I fix this?
This usually happens when your GPU is unable to compile or use one of the LPR models. Set your `device` to `CPU` and try again. GPU acceleration only provides a slight performance increase, and the models are lightweight enough to run without issue on most CPUs.

View File

@ -23,12 +23,7 @@ from markupsafe import escape
from peewee import SQL, fn, operator
from pydantic import ValidationError
from frigate.api.auth import (
allow_any_authenticated,
allow_public,
get_allowed_cameras_for_filter,
require_role,
)
from frigate.api.auth import allow_any_authenticated, allow_public, require_role
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.request.app_body import AppConfigSetBody
from frigate.api.defs.tags import Tags
@ -692,19 +687,13 @@ def plusModels(request: Request, filterByCurrentModelDetector: bool = False):
@router.get(
"/recognized_license_plates", dependencies=[Depends(allow_any_authenticated())]
)
def get_recognized_license_plates(
split_joined: Optional[int] = None,
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
def get_recognized_license_plates(split_joined: Optional[int] = None):
try:
query = (
Event.select(
SQL("json_extract(data, '$.recognized_license_plate') AS plate")
)
.where(
(SQL("json_extract(data, '$.recognized_license_plate') IS NOT NULL"))
& (Event.camera << allowed_cameras)
)
.where(SQL("json_extract(data, '$.recognized_license_plate') IS NOT NULL"))
.distinct()
)
recognized_license_plates = [row[0] for row in query.tuples()]

View File

@ -662,13 +662,6 @@ class FrigateConfig(FrigateBaseModel):
# generate zone contours
if len(camera_config.zones) > 0:
for zone in camera_config.zones.values():
if zone.filters:
for object_name, filter_config in zone.filters.items():
zone.filters[object_name] = RuntimeFilterConfig(
frame_shape=camera_config.frame_shape,
**filter_config.model_dump(exclude_unset=True),
)
zone.generate_contour(camera_config.frame_shape)
# Set live view stream if none is set

View File

@ -24,14 +24,6 @@ class GeminiClient(GenAIClient):
http_options_dict = {
"api_version": "v1",
"timeout": int(self.timeout * 1000), # requires milliseconds
"retry_options": types.HttpRetryOptions(
attempts=3,
initial_delay=1.0,
max_delay=60.0,
exp_base=2.0,
jitter=1.0,
http_status_codes=[429, 500, 502, 503, 504],
),
}
if isinstance(self.genai_config.provider_options, dict):

View File

@ -97,7 +97,6 @@ class RecordingMaintainer(threading.Thread):
self.object_recordings_info: dict[str, list] = defaultdict(list)
self.audio_recordings_info: dict[str, list] = defaultdict(list)
self.end_time_cache: dict[str, Tuple[datetime.datetime, float]] = {}
self.unexpected_cache_files_logged: bool = False
async def move_files(self) -> None:
cache_files = [
@ -113,14 +112,7 @@ class RecordingMaintainer(threading.Thread):
for cache in cache_files:
cache_path = os.path.join(CACHE_DIR, cache)
basename = os.path.splitext(cache)[0]
try:
camera, date = basename.rsplit("@", maxsplit=1)
except ValueError:
if not self.unexpected_cache_files_logged:
logger.warning("Skipping unexpected files in cache")
self.unexpected_cache_files_logged = True
continue
camera, date = basename.rsplit("@", maxsplit=1)
start_time = datetime.datetime.strptime(
date, CACHE_SEGMENT_FORMAT
).astimezone(datetime.timezone.utc)
@ -172,13 +164,7 @@ class RecordingMaintainer(threading.Thread):
cache_path = os.path.join(CACHE_DIR, cache)
basename = os.path.splitext(cache)[0]
try:
camera, date = basename.rsplit("@", maxsplit=1)
except ValueError:
if not self.unexpected_cache_files_logged:
logger.warning("Skipping unexpected files in cache")
self.unexpected_cache_files_logged = True
continue
camera, date = basename.rsplit("@", maxsplit=1)
# important that start_time is utc because recordings are stored and compared in utc
start_time = datetime.datetime.strptime(

View File

@ -632,49 +632,6 @@ class TestConfig(unittest.TestCase):
)
assert frigate_config.cameras["back"].zones["test"].color != (0, 0, 0)
def test_zone_filter_area_percent_converts_to_pixels(self):
config = {
"mqtt": {"host": "mqtt"},
"record": {
"alerts": {
"retain": {
"days": 20,
}
}
},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{"path": "rtsp://10.0.0.1:554/video", "roles": ["detect"]}
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"zones": {
"notification": {
"coordinates": "0.03,1,0.025,0,0.626,0,0.643,1",
"objects": ["person"],
"filters": {"person": {"min_area": 0.1}},
}
},
}
},
}
frigate_config = FrigateConfig(**config)
expected_min_area = int(1080 * 1920 * 0.1)
assert (
frigate_config.cameras["back"]
.zones["notification"]
.filters["person"]
.min_area
== expected_min_area
)
def test_zone_relative_matches_explicit(self):
config = {
"mqtt": {"host": "mqtt"},

View File

@ -1,66 +0,0 @@
import sys
import unittest
from unittest.mock import MagicMock, patch
# Mock complex imports before importing maintainer
sys.modules["frigate.comms.inter_process"] = MagicMock()
sys.modules["frigate.comms.detections_updater"] = MagicMock()
sys.modules["frigate.comms.recordings_updater"] = MagicMock()
sys.modules["frigate.config.camera.updater"] = MagicMock()
# Now import the class under test
from frigate.config import FrigateConfig # noqa: E402
from frigate.record.maintainer import RecordingMaintainer # noqa: E402
class TestMaintainer(unittest.IsolatedAsyncioTestCase):
async def test_move_files_survives_bad_filename(self):
config = MagicMock(spec=FrigateConfig)
config.cameras = {}
stop_event = MagicMock()
maintainer = RecordingMaintainer(config, stop_event)
# We need to mock end_time_cache to avoid key errors if logic proceeds
maintainer.end_time_cache = {}
# Mock filesystem
# One bad file, one good file
files = ["bad_filename.mp4", "camera@20210101000000+0000.mp4"]
with patch("os.listdir", return_value=files):
with patch("os.path.isfile", return_value=True):
with patch(
"frigate.record.maintainer.psutil.process_iter", return_value=[]
):
with patch("frigate.record.maintainer.logger.warning") as warn:
# Mock validate_and_move_segment to avoid further logic
maintainer.validate_and_move_segment = MagicMock()
try:
await maintainer.move_files()
except ValueError as e:
if "not enough values to unpack" in str(e):
self.fail("move_files() crashed on bad filename!")
raise e
except Exception:
# Ignore other errors (like DB connection) as we only care about the unpack crash
pass
# The bad filename is encountered in multiple loops, but should only warn once.
matching = [
c
for c in warn.call_args_list
if c.args
and isinstance(c.args[0], str)
and "Skipping unexpected files in cache" in c.args[0]
]
self.assertEqual(
1,
len(matching),
f"Expected a single warning for unexpected files, got {len(matching)}",
)
if __name__ == "__main__":
unittest.main()

View File

@ -3,7 +3,6 @@
"untilForTime": "Until {{time}}",
"untilForRestart": "Until Frigate restarts.",
"untilRestart": "Until restart",
"never": "Never",
"ago": "{{timeAgo}} ago",
"justNow": "Just now",
"today": "Today",

View File

@ -268,7 +268,7 @@ export default function CreateTriggerDialog({
<FormItem className="flex flex-row items-center justify-between">
<div className="space-y-0.5">
<FormLabel className="text-base">
{t("button.enabled", { ns: "common" })}
{t("enabled", { ns: "common" })}
</FormLabel>
<div className="text-sm text-muted-foreground">
{t("triggers.dialog.form.enabled.description")}
@ -394,10 +394,7 @@ export default function CreateTriggerDialog({
</FormLabel>
<div className="space-y-2">
{availableActions.map((action) => (
<label
key={action}
className="flex cursor-pointer items-center space-x-2"
>
<div key={action} className="flex items-center space-x-2">
<FormControl>
<Checkbox
checked={form
@ -419,10 +416,10 @@ export default function CreateTriggerDialog({
}}
/>
</FormControl>
<span className="text-sm font-normal">
<FormLabel className="text-sm font-normal">
{t(`triggers.actions.${action}`)}
</span>
</label>
</FormLabel>
</div>
))}
</div>
<FormDescription>

View File

@ -142,10 +142,7 @@ export default function Step3ThresholdAndActions({
<FormLabel>{t("triggers.dialog.form.actions.title")}</FormLabel>
<div className="space-y-2">
{availableActions.map((action) => (
<label
key={action}
className="flex cursor-pointer items-center space-x-2"
>
<div key={action} className="flex items-center space-x-2">
<FormControl>
<Checkbox
checked={form
@ -167,10 +164,10 @@ export default function Step3ThresholdAndActions({
}}
/>
</FormControl>
<span className="text-sm font-normal">
<FormLabel className="text-sm font-normal">
{t(`triggers.actions.${action}`)}
</span>
</label>
</FormLabel>
</div>
))}
</div>
<FormDescription>
@ -200,7 +197,9 @@ export default function Step3ThresholdAndActions({
{isLoading && <ActivityIndicator className="mr-2 size-5" />}
{isLoading
? t("button.saving", { ns: "common" })
: t("button.save", { ns: "common" })}
: t("triggers.dialog.form.save", {
defaultValue: "Save Trigger",
})}
</Button>
</div>
</form>

View File

@ -206,7 +206,7 @@ function Exports() {
>
{Object.values(exports).map((item) => (
<ExportCard
key={item.id}
key={item.name}
className={
search == "" || filteredExports.includes(item) ? "" : "hidden"
}

View File

@ -1,7 +1,6 @@
import { useCallback, useEffect, useMemo, useState } from "react";
import { Trans, useTranslation } from "react-i18next";
import { toast } from "sonner";
import { Toaster } from "@/components/ui/sonner";
import { Toaster, toast } from "sonner";
import useSWR from "swr";
import axios from "axios";
import { Button } from "@/components/ui/button";
@ -599,7 +598,7 @@ export default function TriggerView({
date_style: "medium",
},
)
: t("never", { ns: "common" })}
: "Never"}
</span>
{trigger_status?.triggers[trigger.name]
?.triggering_event_id && (
@ -664,9 +663,7 @@ export default function TriggerView({
<TableHeader className="sticky top-0 bg-muted/50">
<TableRow>
<TableHead className="w-4"></TableHead>
<TableHead>
{t("name", { ns: "triggers.table.name" })}
</TableHead>
<TableHead>{t("name", { ns: "common" })}</TableHead>
<TableHead>{t("triggers.table.type")}</TableHead>
<TableHead>
{t("triggers.table.lastTriggered")}
@ -762,7 +759,7 @@ export default function TriggerView({
date_style: "medium",
},
)
: t("time.never", { ns: "common" })}
: "Never"}
</span>
{trigger_status?.triggers[trigger.name]
?.triggering_event_id && (