mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-20 12:06:43 +03:00
Compare commits
9 Commits
3ab8036c62
...
52b3e3a2f4
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
52b3e3a2f4 | ||
|
|
c84bfd3ace | ||
|
|
e0389382f8 | ||
|
|
8aad89a83a | ||
|
|
55dcbc6371 | ||
|
|
b8216d0536 | ||
|
|
c0f1fa1f61 | ||
|
|
c3f242dc53 | ||
|
|
6ee5f246aa |
@ -595,9 +595,13 @@ def get_classification_dataset(name: str):
|
|||||||
"last_training_image_count": 0,
|
"last_training_image_count": 0,
|
||||||
"current_image_count": current_image_count,
|
"current_image_count": current_image_count,
|
||||||
"new_images_count": current_image_count,
|
"new_images_count": current_image_count,
|
||||||
|
"dataset_changed": current_image_count > 0,
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
last_training_count = metadata.get("last_training_image_count", 0)
|
last_training_count = metadata.get("last_training_image_count", 0)
|
||||||
|
# Dataset has changed if count is different (either added or deleted images)
|
||||||
|
dataset_changed = current_image_count != last_training_count
|
||||||
|
# Only show positive count for new images (ignore deletions in the count display)
|
||||||
new_images_count = max(0, current_image_count - last_training_count)
|
new_images_count = max(0, current_image_count - last_training_count)
|
||||||
training_metadata = {
|
training_metadata = {
|
||||||
"has_trained": True,
|
"has_trained": True,
|
||||||
@ -605,6 +609,7 @@ def get_classification_dataset(name: str):
|
|||||||
"last_training_image_count": last_training_count,
|
"last_training_image_count": last_training_count,
|
||||||
"current_image_count": current_image_count,
|
"current_image_count": current_image_count,
|
||||||
"new_images_count": new_images_count,
|
"new_images_count": new_images_count,
|
||||||
|
"dataset_changed": dataset_changed,
|
||||||
}
|
}
|
||||||
|
|
||||||
return JSONResponse(
|
return JSONResponse(
|
||||||
@ -948,31 +953,29 @@ async def generate_object_examples(request: Request, body: GenerateObjectExample
|
|||||||
dependencies=[Depends(require_role(["admin"]))],
|
dependencies=[Depends(require_role(["admin"]))],
|
||||||
summary="Delete a classification model",
|
summary="Delete a classification model",
|
||||||
description="""Deletes a specific classification model and all its associated data.
|
description="""Deletes a specific classification model and all its associated data.
|
||||||
The name must exist in the classification models. Returns a success message or an error if the name is invalid.""",
|
Works even if the model is not in the config (e.g., partially created during wizard).
|
||||||
|
Returns a success message.""",
|
||||||
)
|
)
|
||||||
def delete_classification_model(request: Request, name: str):
|
def delete_classification_model(request: Request, name: str):
|
||||||
config: FrigateConfig = request.app.frigate_config
|
sanitized_name = sanitize_filename(name)
|
||||||
|
|
||||||
if name not in config.classification.custom:
|
|
||||||
return JSONResponse(
|
|
||||||
content=(
|
|
||||||
{
|
|
||||||
"success": False,
|
|
||||||
"message": f"{name} is not a known classification model.",
|
|
||||||
}
|
|
||||||
),
|
|
||||||
status_code=404,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Delete the classification model's data directory in clips
|
# Delete the classification model's data directory in clips
|
||||||
data_dir = os.path.join(CLIPS_DIR, sanitize_filename(name))
|
data_dir = os.path.join(CLIPS_DIR, sanitized_name)
|
||||||
if os.path.exists(data_dir):
|
if os.path.exists(data_dir):
|
||||||
shutil.rmtree(data_dir)
|
try:
|
||||||
|
shutil.rmtree(data_dir)
|
||||||
|
logger.info(f"Deleted classification data directory for {name}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.debug(f"Failed to delete data directory for {name}: {e}")
|
||||||
|
|
||||||
# Delete the classification model's files in model_cache
|
# Delete the classification model's files in model_cache
|
||||||
model_dir = os.path.join(MODEL_CACHE_DIR, sanitize_filename(name))
|
model_dir = os.path.join(MODEL_CACHE_DIR, sanitized_name)
|
||||||
if os.path.exists(model_dir):
|
if os.path.exists(model_dir):
|
||||||
shutil.rmtree(model_dir)
|
try:
|
||||||
|
shutil.rmtree(model_dir)
|
||||||
|
logger.info(f"Deleted classification model directory for {name}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.debug(f"Failed to delete model directory for {name}: {e}")
|
||||||
|
|
||||||
return JSONResponse(
|
return JSONResponse(
|
||||||
content=(
|
content=(
|
||||||
|
|||||||
@ -4,7 +4,6 @@ import logging
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
import sherpa_onnx
|
import sherpa_onnx
|
||||||
from faster_whisper.utils import download_model
|
|
||||||
|
|
||||||
from frigate.comms.inter_process import InterProcessRequestor
|
from frigate.comms.inter_process import InterProcessRequestor
|
||||||
from frigate.const import MODEL_CACHE_DIR
|
from frigate.const import MODEL_CACHE_DIR
|
||||||
@ -25,6 +24,9 @@ class AudioTranscriptionModelRunner:
|
|||||||
|
|
||||||
if model_size == "large":
|
if model_size == "large":
|
||||||
# use the Whisper download function instead of our own
|
# use the Whisper download function instead of our own
|
||||||
|
# Import dynamically to avoid crashes on systems without AVX support
|
||||||
|
from faster_whisper.utils import download_model
|
||||||
|
|
||||||
logger.debug("Downloading Whisper audio transcription model")
|
logger.debug("Downloading Whisper audio transcription model")
|
||||||
download_model(
|
download_model(
|
||||||
size_or_id="small" if device == "cuda" else "tiny",
|
size_or_id="small" if device == "cuda" else "tiny",
|
||||||
|
|||||||
@ -6,7 +6,6 @@ import threading
|
|||||||
import time
|
import time
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from faster_whisper import WhisperModel
|
|
||||||
from peewee import DoesNotExist
|
from peewee import DoesNotExist
|
||||||
|
|
||||||
from frigate.comms.inter_process import InterProcessRequestor
|
from frigate.comms.inter_process import InterProcessRequestor
|
||||||
@ -51,6 +50,9 @@ class AudioTranscriptionPostProcessor(PostProcessorApi):
|
|||||||
|
|
||||||
def __build_recognizer(self) -> None:
|
def __build_recognizer(self) -> None:
|
||||||
try:
|
try:
|
||||||
|
# Import dynamically to avoid crashes on systems without AVX support
|
||||||
|
from faster_whisper import WhisperModel
|
||||||
|
|
||||||
self.recognizer = WhisperModel(
|
self.recognizer = WhisperModel(
|
||||||
model_size_or_path="small",
|
model_size_or_path="small",
|
||||||
device="cuda"
|
device="cuda"
|
||||||
|
|||||||
@ -394,7 +394,11 @@ class OpenVINOModelRunner(BaseModelRunner):
|
|||||||
self.infer_request.set_input_tensor(input_index, input_tensor)
|
self.infer_request.set_input_tensor(input_index, input_tensor)
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
self.infer_request.infer()
|
try:
|
||||||
|
self.infer_request.infer()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error during OpenVINO inference: {e}")
|
||||||
|
return []
|
||||||
|
|
||||||
# Get all output tensors
|
# Get all output tensors
|
||||||
outputs = []
|
outputs = []
|
||||||
|
|||||||
@ -16,6 +16,7 @@
|
|||||||
"tooltip": {
|
"tooltip": {
|
||||||
"trainingInProgress": "Model is currently training",
|
"trainingInProgress": "Model is currently training",
|
||||||
"noNewImages": "No new images to train. Classify more images in the dataset first.",
|
"noNewImages": "No new images to train. Classify more images in the dataset first.",
|
||||||
|
"noChanges": "No changes to the dataset since last training.",
|
||||||
"modelNotReady": "Model is not ready for training"
|
"modelNotReady": "Model is not ready for training"
|
||||||
},
|
},
|
||||||
"toast": {
|
"toast": {
|
||||||
@ -43,7 +44,9 @@
|
|||||||
},
|
},
|
||||||
"deleteCategory": {
|
"deleteCategory": {
|
||||||
"title": "Delete Class",
|
"title": "Delete Class",
|
||||||
"desc": "Are you sure you want to delete the class {{name}}? This will permanently delete all associated images and require re-training the model."
|
"desc": "Are you sure you want to delete the class {{name}}? This will permanently delete all associated images and require re-training the model.",
|
||||||
|
"minClassesTitle": "Cannot Delete Class",
|
||||||
|
"minClassesDesc": "A classification model must have at least 2 classes. Add another class before deleting this one."
|
||||||
},
|
},
|
||||||
"deleteModel": {
|
"deleteModel": {
|
||||||
"title": "Delete Classification Model",
|
"title": "Delete Classification Model",
|
||||||
|
|||||||
@ -15,6 +15,7 @@ import Step3ChooseExamples, {
|
|||||||
} from "./wizard/Step3ChooseExamples";
|
} from "./wizard/Step3ChooseExamples";
|
||||||
import { cn } from "@/lib/utils";
|
import { cn } from "@/lib/utils";
|
||||||
import { isDesktop } from "react-device-detect";
|
import { isDesktop } from "react-device-detect";
|
||||||
|
import axios from "axios";
|
||||||
|
|
||||||
const OBJECT_STEPS = [
|
const OBJECT_STEPS = [
|
||||||
"wizard.steps.nameAndDefine",
|
"wizard.steps.nameAndDefine",
|
||||||
@ -120,7 +121,18 @@ export default function ClassificationModelWizardDialog({
|
|||||||
dispatch({ type: "PREVIOUS_STEP" });
|
dispatch({ type: "PREVIOUS_STEP" });
|
||||||
};
|
};
|
||||||
|
|
||||||
const handleCancel = () => {
|
const handleCancel = async () => {
|
||||||
|
// Clean up any generated training images if we're cancelling from Step 3
|
||||||
|
if (wizardState.step1Data && wizardState.step3Data?.examplesGenerated) {
|
||||||
|
try {
|
||||||
|
await axios.delete(
|
||||||
|
`/classification/${wizardState.step1Data.modelName}`,
|
||||||
|
);
|
||||||
|
} catch (error) {
|
||||||
|
// Silently fail - user is already cancelling
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
dispatch({ type: "RESET" });
|
dispatch({ type: "RESET" });
|
||||||
onClose();
|
onClose();
|
||||||
};
|
};
|
||||||
|
|||||||
@ -165,18 +165,15 @@ export default function Step3ChooseExamples({
|
|||||||
const isLastClass = currentClassIndex === allClasses.length - 1;
|
const isLastClass = currentClassIndex === allClasses.length - 1;
|
||||||
|
|
||||||
if (isLastClass) {
|
if (isLastClass) {
|
||||||
// Assign remaining unclassified images
|
// For object models, assign remaining unclassified images to "none"
|
||||||
unknownImages.slice(0, 24).forEach((imageName) => {
|
// For state models, this should never happen since we require all images to be classified
|
||||||
if (!newClassifications[imageName]) {
|
if (step1Data.modelType !== "state") {
|
||||||
// For state models with 2 classes, assign to the last class
|
unknownImages.slice(0, 24).forEach((imageName) => {
|
||||||
// For object models, assign to "none"
|
if (!newClassifications[imageName]) {
|
||||||
if (step1Data.modelType === "state" && allClasses.length === 2) {
|
|
||||||
newClassifications[imageName] = allClasses[allClasses.length - 1];
|
|
||||||
} else {
|
|
||||||
newClassifications[imageName] = "none";
|
newClassifications[imageName] = "none";
|
||||||
}
|
}
|
||||||
}
|
});
|
||||||
});
|
}
|
||||||
|
|
||||||
// All done, trigger training immediately
|
// All done, trigger training immediately
|
||||||
setImageClassifications(newClassifications);
|
setImageClassifications(newClassifications);
|
||||||
@ -316,8 +313,15 @@ export default function Step3ChooseExamples({
|
|||||||
return images;
|
return images;
|
||||||
}
|
}
|
||||||
|
|
||||||
return images.filter((img) => !imageClassifications[img]);
|
// If we're viewing a previous class (going back), show images for that class
|
||||||
}, [unknownImages, imageClassifications]);
|
// Otherwise show only unclassified images
|
||||||
|
const currentClassInView = allClasses[currentClassIndex];
|
||||||
|
return images.filter((img) => {
|
||||||
|
const imgClass = imageClassifications[img];
|
||||||
|
// Show if: unclassified OR classified with current class we're viewing
|
||||||
|
return !imgClass || imgClass === currentClassInView;
|
||||||
|
});
|
||||||
|
}, [unknownImages, imageClassifications, allClasses, currentClassIndex]);
|
||||||
|
|
||||||
const allImagesClassified = useMemo(() => {
|
const allImagesClassified = useMemo(() => {
|
||||||
return unclassifiedImages.length === 0;
|
return unclassifiedImages.length === 0;
|
||||||
@ -326,15 +330,26 @@ export default function Step3ChooseExamples({
|
|||||||
// For state models on the last class, require all images to be classified
|
// For state models on the last class, require all images to be classified
|
||||||
const isLastClass = currentClassIndex === allClasses.length - 1;
|
const isLastClass = currentClassIndex === allClasses.length - 1;
|
||||||
const canProceed = useMemo(() => {
|
const canProceed = useMemo(() => {
|
||||||
if (
|
if (step1Data.modelType === "state" && isLastClass) {
|
||||||
step1Data.modelType === "state" &&
|
// Check if all 24 images will be classified after current selections are applied
|
||||||
isLastClass &&
|
const totalImages = unknownImages.slice(0, 24).length;
|
||||||
!allImagesClassified
|
|
||||||
) {
|
// Count images that will be classified (either already classified or currently selected)
|
||||||
return false;
|
const allImages = unknownImages.slice(0, 24);
|
||||||
|
const willBeClassified = allImages.filter((img) => {
|
||||||
|
return imageClassifications[img] || selectedImages.has(img);
|
||||||
|
}).length;
|
||||||
|
|
||||||
|
return willBeClassified >= totalImages;
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
}, [step1Data.modelType, isLastClass, allImagesClassified]);
|
}, [
|
||||||
|
step1Data.modelType,
|
||||||
|
isLastClass,
|
||||||
|
unknownImages,
|
||||||
|
imageClassifications,
|
||||||
|
selectedImages,
|
||||||
|
]);
|
||||||
|
|
||||||
const handleBack = useCallback(() => {
|
const handleBack = useCallback(() => {
|
||||||
if (currentClassIndex > 0) {
|
if (currentClassIndex > 0) {
|
||||||
|
|||||||
@ -12,13 +12,13 @@ export function ImageShadowOverlay({
|
|||||||
<>
|
<>
|
||||||
<div
|
<div
|
||||||
className={cn(
|
className={cn(
|
||||||
"pointer-events-none absolute inset-x-0 top-0 z-10 h-[30%] w-full rounded-lg bg-gradient-to-b from-black/20 to-transparent md:rounded-2xl",
|
"pointer-events-none absolute inset-x-0 top-0 z-10 h-[30%] w-full rounded-lg bg-gradient-to-b from-black/20 to-transparent",
|
||||||
upperClassName,
|
upperClassName,
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
<div
|
<div
|
||||||
className={cn(
|
className={cn(
|
||||||
"pointer-events-none absolute inset-x-0 bottom-0 z-10 h-[10%] w-full rounded-lg bg-gradient-to-t from-black/20 to-transparent md:rounded-2xl",
|
"pointer-events-none absolute inset-x-0 bottom-0 z-10 h-[10%] w-full rounded-lg bg-gradient-to-t from-black/20 to-transparent",
|
||||||
lowerClassName,
|
lowerClassName,
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
|
|||||||
@ -77,7 +77,10 @@ export default function BirdseyeLivePlayer({
|
|||||||
)}
|
)}
|
||||||
onClick={onClick}
|
onClick={onClick}
|
||||||
>
|
>
|
||||||
<ImageShadowOverlay />
|
<ImageShadowOverlay
|
||||||
|
upperClassName="md:rounded-2xl"
|
||||||
|
lowerClassName="md:rounded-2xl"
|
||||||
|
/>
|
||||||
<div className="size-full" ref={playerRef}>
|
<div className="size-full" ref={playerRef}>
|
||||||
{player}
|
{player}
|
||||||
</div>
|
</div>
|
||||||
|
|||||||
@ -331,7 +331,10 @@ export default function LivePlayer({
|
|||||||
>
|
>
|
||||||
{cameraEnabled &&
|
{cameraEnabled &&
|
||||||
((showStillWithoutActivity && !liveReady) || liveReady) && (
|
((showStillWithoutActivity && !liveReady) || liveReady) && (
|
||||||
<ImageShadowOverlay />
|
<ImageShadowOverlay
|
||||||
|
upperClassName="md:rounded-2xl"
|
||||||
|
lowerClassName="md:rounded-2xl"
|
||||||
|
/>
|
||||||
)}
|
)}
|
||||||
{player}
|
{player}
|
||||||
{cameraEnabled &&
|
{cameraEnabled &&
|
||||||
|
|||||||
@ -1,4 +1,10 @@
|
|||||||
import React, { createContext, useContext, useState, useEffect } from "react";
|
import React, {
|
||||||
|
createContext,
|
||||||
|
useContext,
|
||||||
|
useState,
|
||||||
|
useEffect,
|
||||||
|
useRef,
|
||||||
|
} from "react";
|
||||||
import { FrigateConfig } from "@/types/frigateConfig";
|
import { FrigateConfig } from "@/types/frigateConfig";
|
||||||
import useSWR from "swr";
|
import useSWR from "swr";
|
||||||
|
|
||||||
@ -36,6 +42,23 @@ export function DetailStreamProvider({
|
|||||||
() => initialSelectedObjectIds ?? [],
|
() => initialSelectedObjectIds ?? [],
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// When the parent provides a new initialSelectedObjectIds (for example
|
||||||
|
// when navigating between search results) update the selection so children
|
||||||
|
// like `ObjectTrackOverlay` receive the new ids immediately. We only
|
||||||
|
// perform this update when the incoming value actually changes.
|
||||||
|
useEffect(() => {
|
||||||
|
if (
|
||||||
|
initialSelectedObjectIds &&
|
||||||
|
(initialSelectedObjectIds.length !== selectedObjectIds.length ||
|
||||||
|
initialSelectedObjectIds.some((v, i) => selectedObjectIds[i] !== v))
|
||||||
|
) {
|
||||||
|
setSelectedObjectIds(initialSelectedObjectIds);
|
||||||
|
}
|
||||||
|
// Intentionally include selectedObjectIds to compare previous value and
|
||||||
|
// avoid overwriting user interactions unless the incoming prop changed.
|
||||||
|
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||||
|
}, [initialSelectedObjectIds]);
|
||||||
|
|
||||||
const toggleObjectSelection = (id: string | undefined) => {
|
const toggleObjectSelection = (id: string | undefined) => {
|
||||||
if (id === undefined) {
|
if (id === undefined) {
|
||||||
setSelectedObjectIds([]);
|
setSelectedObjectIds([]);
|
||||||
@ -63,10 +86,33 @@ export function DetailStreamProvider({
|
|||||||
setAnnotationOffset(cfgOffset);
|
setAnnotationOffset(cfgOffset);
|
||||||
}, [config, camera]);
|
}, [config, camera]);
|
||||||
|
|
||||||
// Clear selected objects when exiting detail mode or changing cameras
|
// Clear selected objects when exiting detail mode or when the camera
|
||||||
|
// changes for providers that are not initialized with an explicit
|
||||||
|
// `initialSelectedObjectIds` (e.g., the RecordingView). For providers
|
||||||
|
// that receive `initialSelectedObjectIds` (like SearchDetailDialog) we
|
||||||
|
// avoid clearing on camera change to prevent a race with children that
|
||||||
|
// immediately set selection when mounting.
|
||||||
|
const prevCameraRef = useRef<string | undefined>(undefined);
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
setSelectedObjectIds([]);
|
// Always clear when leaving detail mode
|
||||||
}, [isDetailMode, camera]);
|
if (!isDetailMode) {
|
||||||
|
setSelectedObjectIds([]);
|
||||||
|
prevCameraRef.current = camera;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If camera changed and the parent did not provide initialSelectedObjectIds,
|
||||||
|
// clear selection to preserve previous behavior.
|
||||||
|
if (
|
||||||
|
prevCameraRef.current !== undefined &&
|
||||||
|
prevCameraRef.current !== camera &&
|
||||||
|
initialSelectedObjectIds === undefined
|
||||||
|
) {
|
||||||
|
setSelectedObjectIds([]);
|
||||||
|
}
|
||||||
|
|
||||||
|
prevCameraRef.current = camera;
|
||||||
|
}, [isDetailMode, camera, initialSelectedObjectIds]);
|
||||||
|
|
||||||
const value: DetailStreamContextType = {
|
const value: DetailStreamContextType = {
|
||||||
selectedObjectIds,
|
selectedObjectIds,
|
||||||
|
|||||||
@ -126,6 +126,7 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
|
|||||||
last_training_image_count: number;
|
last_training_image_count: number;
|
||||||
current_image_count: number;
|
current_image_count: number;
|
||||||
new_images_count: number;
|
new_images_count: number;
|
||||||
|
dataset_changed: boolean;
|
||||||
} | null;
|
} | null;
|
||||||
}>(`classification/${model.name}/dataset`);
|
}>(`classification/${model.name}/dataset`);
|
||||||
|
|
||||||
@ -264,10 +265,11 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Always refresh dataset to update the categories list
|
||||||
|
refreshDataset();
|
||||||
|
|
||||||
if (pageToggle == "train") {
|
if (pageToggle == "train") {
|
||||||
refreshTrain();
|
refreshTrain();
|
||||||
} else {
|
|
||||||
refreshDataset();
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
@ -445,7 +447,7 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
|
|||||||
variant={modelState == "failed" ? "destructive" : "select"}
|
variant={modelState == "failed" ? "destructive" : "select"}
|
||||||
disabled={
|
disabled={
|
||||||
(modelState != "complete" && modelState != "failed") ||
|
(modelState != "complete" && modelState != "failed") ||
|
||||||
(trainingMetadata?.new_images_count ?? 0) === 0
|
!trainingMetadata?.dataset_changed
|
||||||
}
|
}
|
||||||
>
|
>
|
||||||
{modelState == "training" ? (
|
{modelState == "training" ? (
|
||||||
@ -466,14 +468,14 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
|
|||||||
)}
|
)}
|
||||||
</Button>
|
</Button>
|
||||||
</TooltipTrigger>
|
</TooltipTrigger>
|
||||||
{((trainingMetadata?.new_images_count ?? 0) === 0 ||
|
{(!trainingMetadata?.dataset_changed ||
|
||||||
(modelState != "complete" && modelState != "failed")) && (
|
(modelState != "complete" && modelState != "failed")) && (
|
||||||
<TooltipPortal>
|
<TooltipPortal>
|
||||||
<TooltipContent>
|
<TooltipContent>
|
||||||
{modelState == "training"
|
{modelState == "training"
|
||||||
? t("tooltip.trainingInProgress")
|
? t("tooltip.trainingInProgress")
|
||||||
: trainingMetadata?.new_images_count === 0
|
: !trainingMetadata?.dataset_changed
|
||||||
? t("tooltip.noNewImages")
|
? t("tooltip.noChanges")
|
||||||
: t("tooltip.modelNotReady")}
|
: t("tooltip.modelNotReady")}
|
||||||
</TooltipContent>
|
</TooltipContent>
|
||||||
</TooltipPortal>
|
</TooltipPortal>
|
||||||
@ -571,27 +573,44 @@ function LibrarySelector({
|
|||||||
>
|
>
|
||||||
<DialogContent>
|
<DialogContent>
|
||||||
<DialogHeader>
|
<DialogHeader>
|
||||||
<DialogTitle>{t("deleteCategory.title")}</DialogTitle>
|
<DialogTitle>
|
||||||
|
{Object.keys(dataset).length <= 2
|
||||||
|
? t("deleteCategory.minClassesTitle")
|
||||||
|
: t("deleteCategory.title")}
|
||||||
|
</DialogTitle>
|
||||||
<DialogDescription>
|
<DialogDescription>
|
||||||
{t("deleteCategory.desc", { name: confirmDelete })}
|
{Object.keys(dataset).length <= 2
|
||||||
|
? t("deleteCategory.minClassesDesc")
|
||||||
|
: t("deleteCategory.desc", { name: confirmDelete })}
|
||||||
</DialogDescription>
|
</DialogDescription>
|
||||||
</DialogHeader>
|
</DialogHeader>
|
||||||
<div className="flex justify-end gap-2">
|
<div className="flex justify-end gap-2">
|
||||||
<Button variant="outline" onClick={() => setConfirmDelete(null)}>
|
{Object.keys(dataset).length <= 2 ? (
|
||||||
{t("button.cancel", { ns: "common" })}
|
<Button variant="outline" onClick={() => setConfirmDelete(null)}>
|
||||||
</Button>
|
{t("button.ok", { ns: "common" })}
|
||||||
<Button
|
</Button>
|
||||||
variant="destructive"
|
) : (
|
||||||
className="text-white"
|
<>
|
||||||
onClick={() => {
|
<Button
|
||||||
if (confirmDelete) {
|
variant="outline"
|
||||||
handleDeleteCategory(confirmDelete);
|
onClick={() => setConfirmDelete(null)}
|
||||||
setConfirmDelete(null);
|
>
|
||||||
}
|
{t("button.cancel", { ns: "common" })}
|
||||||
}}
|
</Button>
|
||||||
>
|
<Button
|
||||||
{t("button.delete", { ns: "common" })}
|
variant="destructive"
|
||||||
</Button>
|
className="text-white"
|
||||||
|
onClick={() => {
|
||||||
|
if (confirmDelete) {
|
||||||
|
handleDeleteCategory(confirmDelete);
|
||||||
|
setConfirmDelete(null);
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
{t("button.delete", { ns: "common" })}
|
||||||
|
</Button>
|
||||||
|
</>
|
||||||
|
)}
|
||||||
</div>
|
</div>
|
||||||
</DialogContent>
|
</DialogContent>
|
||||||
</Dialog>
|
</Dialog>
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user