mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-19 03:26:41 +03:00
Compare commits
13 Commits
39070df698
...
f514a47f3c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f514a47f3c | ||
|
|
e79ff9a079 | ||
|
|
7933a83a42 | ||
|
|
2eef58aa1d | ||
|
|
6659b7cb0f | ||
|
|
f134796913 | ||
|
|
b4abbd7d3b | ||
|
|
438df7d484 | ||
|
|
e27a94ae0b | ||
|
|
1dee548dbc | ||
|
|
91e17e12b7 | ||
|
|
bb45483e9e | ||
|
|
7b4eaf2d10 |
26
.github/workflows/ci.yml
vendored
26
.github/workflows/ci.yml
vendored
@ -225,3 +225,29 @@ jobs:
|
||||
sources: |
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-amd64
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-rpi
|
||||
axera_build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: AXERA Build
|
||||
needs:
|
||||
- amd64_build
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Axera build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: axcl
|
||||
files: docker/axcl/axcl.hcl
|
||||
set: |
|
||||
axcl.tags=${{ steps.setup.outputs.image-name }}-axcl
|
||||
*.cache-from=type=gha
|
||||
55
docker/axcl/Dockerfile
Normal file
55
docker/axcl/Dockerfile
Normal file
@ -0,0 +1,55 @@
|
||||
# syntax=docker/dockerfile:1.6
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Globally set pip break-system-packages option to avoid having to specify it every time
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES=1
|
||||
|
||||
|
||||
FROM frigate AS frigate-axcl
|
||||
ARG TARGETARCH
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
# Install axpyengine
|
||||
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl
|
||||
RUN pip3 install -i https://mirrors.aliyun.com/pypi/simple/ /axengine-0.1.3-py3-none-any.whl \
|
||||
&& rm /axengine-0.1.3-py3-none-any.whl
|
||||
|
||||
# Install axcl
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
echo "Installing x86_64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
else \
|
||||
echo "Installing aarch64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
fi
|
||||
|
||||
RUN mkdir /unpack_axcl && \
|
||||
dpkg-deb -x /axcl.deb /unpack_axcl && \
|
||||
cp -R /unpack_axcl/usr/bin/axcl /usr/bin/ && \
|
||||
cp -R /unpack_axcl/usr/lib/axcl /usr/lib/ && \
|
||||
rm -rf /unpack_axcl /axcl.deb
|
||||
|
||||
|
||||
# Install axcl ffmpeg
|
||||
RUN mkdir -p /usr/lib/ffmpeg/axcl
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-x64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-x64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
else \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-aarch64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-aarch64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
fi
|
||||
|
||||
RUN chmod +x /usr/lib/ffmpeg/axcl/ffmpeg /usr/lib/ffmpeg/axcl/ffprobe
|
||||
|
||||
# Set ldconfig path
|
||||
RUN echo "/usr/lib/axcl" > /etc/ld.so.conf.d/ax.conf
|
||||
|
||||
# Set env
|
||||
ENV PATH="$PATH:/usr/bin/axcl"
|
||||
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib/axcl"
|
||||
|
||||
ENTRYPOINT ["sh", "-c", "ldconfig && exec /init"]
|
||||
13
docker/axcl/axcl.hcl
Normal file
13
docker/axcl/axcl.hcl
Normal file
@ -0,0 +1,13 @@
|
||||
target frigate {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
target = "frigate"
|
||||
}
|
||||
|
||||
target axcl {
|
||||
dockerfile = "docker/axcl/Dockerfile"
|
||||
contexts = {
|
||||
frigate = "target:frigate",
|
||||
}
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
}
|
||||
15
docker/axcl/axcl.mk
Normal file
15
docker/axcl/axcl.mk
Normal file
@ -0,0 +1,15 @@
|
||||
BOARDS += axcl
|
||||
|
||||
local-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=frigate:latest-axcl \
|
||||
--load
|
||||
|
||||
build-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl
|
||||
|
||||
push-axcl: build-axcl
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl \
|
||||
--push
|
||||
83
docker/axcl/user_installation.sh
Executable file
83
docker/axcl/user_installation.sh
Executable file
@ -0,0 +1,83 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget pciutils kmod udev
|
||||
|
||||
# Check if gcc-12 is needed
|
||||
current_gcc_version=$(gcc --version | head -n1 | awk '{print $NF}')
|
||||
gcc_major_version=$(echo $current_gcc_version | cut -d'.' -f1)
|
||||
|
||||
if [[ $gcc_major_version -lt 12 ]]; then
|
||||
echo "Current GCC version ($current_gcc_version) is lower than 12, installing gcc-12..."
|
||||
sudo apt-get install -y gcc-12
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
|
||||
echo "GCC-12 installed and set as default"
|
||||
else
|
||||
echo "Current GCC version ($current_gcc_version) is sufficient, skipping GCC installation"
|
||||
fi
|
||||
|
||||
# Determine architecture
|
||||
arch=$(uname -m)
|
||||
download_url=""
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
elif [[ $arch == "aarch64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
else
|
||||
echo "Unsupported architecture: $arch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download AXCL driver
|
||||
echo "Downloading AXCL driver for $arch..."
|
||||
wget "$download_url" -O "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to download AXCL driver"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install AXCL driver
|
||||
echo "Installing AXCL driver..."
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to install AXCL driver, attempting to fix dependencies..."
|
||||
sudo apt-get install -f -y
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "AXCL driver installation failed"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Update environment
|
||||
echo "Updating environment..."
|
||||
source /etc/profile
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying AXCL installation..."
|
||||
if command -v axcl-smi &> /dev/null; then
|
||||
echo "AXCL driver detected, checking AI accelerator status..."
|
||||
|
||||
axcl_output=$(axcl-smi 2>&1)
|
||||
axcl_exit_code=$?
|
||||
|
||||
echo "$axcl_output"
|
||||
|
||||
if [ $axcl_exit_code -eq 0 ]; then
|
||||
echo "AXCL driver installation completed successfully!"
|
||||
else
|
||||
echo "AXCL driver installed but no AI accelerator detected or communication failed."
|
||||
echo "Please check if the AI accelerator is properly connected and powered on."
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "axcl-smi command not found. AXCL driver installation may have failed."
|
||||
exit 1
|
||||
fi
|
||||
@ -81,3 +81,5 @@ librosa==0.11.*
|
||||
soundfile==0.13.*
|
||||
# DeGirum detector
|
||||
degirum == 0.16.*
|
||||
# Memory profiling
|
||||
memray == 1.15.*
|
||||
|
||||
@ -49,6 +49,11 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axmodels can run on AXERA AI acceleration.
|
||||
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
@ -1438,6 +1443,41 @@ model:
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
## AXERA
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
- AX650N
|
||||
- AX8850N
|
||||
|
||||
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
||||
|
||||
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
||||
|
||||
### Configuration
|
||||
|
||||
When configuring the AXEngine detector, you have to specify the model name.
|
||||
|
||||
#### yolov9
|
||||
|
||||
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
|
||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
axengine:
|
||||
type: axengine
|
||||
|
||||
model:
|
||||
path: frigate-yolov9-tiny
|
||||
model_type: yolo-generic
|
||||
width: 320
|
||||
height: 320
|
||||
tensor_format: bgr
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
# Models
|
||||
|
||||
Some model types are not included in Frigate by default.
|
||||
|
||||
@ -104,6 +104,10 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs to provide efficient object detection.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axera models can run on AXERA NPUs via AXEngine, delivering highly efficient object detection.
|
||||
|
||||
:::
|
||||
|
||||
### Hailo-8
|
||||
@ -287,6 +291,14 @@ The inference time of a rk3588 with all 3 cores enabled is typically 25-30 ms fo
|
||||
| ssd mobilenet | ~ 25 ms |
|
||||
| yolov5m | ~ 118 ms |
|
||||
|
||||
### AXERA
|
||||
|
||||
- **AXEngine** Default model is **yolov9**
|
||||
|
||||
| Name | AXERA AX650N/AX8850N Inference Time |
|
||||
| ---------------- | ----------------------------------- |
|
||||
| yolov9-tiny | ~ 4 ms |
|
||||
|
||||
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
|
||||
|
||||
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
|
||||
|
||||
@ -287,6 +287,42 @@ or add these options to your `docker run` command:
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#synaptics) and [hardware video processing](/configuration/hardware_acceleration_video#synaptics).
|
||||
|
||||
### AXERA
|
||||
|
||||
<details>
|
||||
<summary>AXERA accelerators</summary>
|
||||
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
||||
|
||||
#### Installation
|
||||
|
||||
Using AXERA accelerators requires the installation of the AXCL driver. We provide a convenient Linux script to complete this installation.
|
||||
|
||||
Follow these steps for installation:
|
||||
|
||||
1. Copy or download [this script](https://github.com/ivanshi1108/assets/releases/download/v0.16.2/user_installation.sh).
|
||||
2. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
|
||||
3. Run the script with `./user_installation.sh`
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/axcl_host
|
||||
- /dev/ax_mmb_dev
|
||||
- /dev/msg_userdev
|
||||
```
|
||||
|
||||
If you are using `docker run`, add this option to your command `--device /dev/axcl_host --device /dev/ax_mmb_dev --device /dev/msg_userdev`
|
||||
|
||||
#### Configuration
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
||||
</details>
|
||||
|
||||
## Docker
|
||||
|
||||
Running through Docker with Docker Compose is the recommended install method.
|
||||
|
||||
129
docs/docs/troubleshooting/memory.md
Normal file
129
docs/docs/troubleshooting/memory.md
Normal file
@ -0,0 +1,129 @@
|
||||
---
|
||||
id: memory
|
||||
title: Memory Troubleshooting
|
||||
---
|
||||
|
||||
Frigate includes built-in memory profiling using [memray](https://bloomberg.github.io/memray/) to help diagnose memory issues. This feature allows you to profile specific Frigate modules to identify memory leaks, excessive allocations, or other memory-related problems.
|
||||
|
||||
## Enabling Memory Profiling
|
||||
|
||||
Memory profiling is controlled via the `FRIGATE_MEMRAY_MODULES` environment variable. Set it to a comma-separated list of module names you want to profile:
|
||||
|
||||
```bash
|
||||
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
|
||||
```
|
||||
|
||||
### Module Names
|
||||
|
||||
Frigate processes are named using a module-based naming scheme. Common module names include:
|
||||
|
||||
- `frigate.review_segment_manager` - Review segment processing
|
||||
- `frigate.recording_manager` - Recording management
|
||||
- `frigate.capture` - Camera capture processes (all cameras with this module name)
|
||||
- `frigate.process` - Camera processing/tracking (all cameras with this module name)
|
||||
- `frigate.output` - Output processing
|
||||
- `frigate.audio_manager` - Audio processing
|
||||
- `frigate.embeddings` - Embeddings processing
|
||||
|
||||
You can also specify the full process name (including camera-specific identifiers) if you want to profile a specific camera:
|
||||
|
||||
```bash
|
||||
export FRIGATE_MEMRAY_MODULES="frigate.capture:front_door"
|
||||
```
|
||||
|
||||
When you specify a module name (e.g., `frigate.capture`), all processes with that module prefix will be profiled. For example, `frigate.capture` will profile all camera capture processes.
|
||||
|
||||
## How It Works
|
||||
|
||||
1. **Binary File Creation**: When profiling is enabled, memray creates a binary file (`.bin`) in `/config/memray_reports/` that is updated continuously in real-time as the process runs.
|
||||
|
||||
2. **Automatic HTML Generation**: On normal process exit, Frigate automatically:
|
||||
|
||||
- Stops memray tracking
|
||||
- Generates an HTML flamegraph report
|
||||
- Saves it to `/config/memray_reports/<module_name>.html`
|
||||
|
||||
3. **Crash Recovery**: If a process crashes (SIGKILL, segfault, etc.), the binary file is preserved with all data up to the crash point. You can manually generate the HTML report from the binary file.
|
||||
|
||||
## Viewing Reports
|
||||
|
||||
### Automatic Reports
|
||||
|
||||
After a process exits normally, you'll find HTML reports in `/config/memray_reports/`. Open these files in a web browser to view interactive flamegraphs showing memory usage patterns.
|
||||
|
||||
### Manual Report Generation
|
||||
|
||||
If a process crashes or you want to generate a report from an existing binary file, you can manually create the HTML report:
|
||||
|
||||
```bash
|
||||
memray flamegraph /config/memray_reports/<module_name>.bin
|
||||
```
|
||||
|
||||
This will generate an HTML file that you can open in your browser.
|
||||
|
||||
## Understanding the Reports
|
||||
|
||||
Memray flamegraphs show:
|
||||
|
||||
- **Memory allocations over time**: See where memory is being allocated in your code
|
||||
- **Call stacks**: Understand the full call chain leading to allocations
|
||||
- **Memory hotspots**: Identify functions or code paths that allocate the most memory
|
||||
- **Memory leaks**: Spot patterns where memory is allocated but not freed
|
||||
|
||||
The interactive HTML reports allow you to:
|
||||
|
||||
- Zoom into specific time ranges
|
||||
- Filter by function names
|
||||
- View detailed allocation information
|
||||
- Export data for further analysis
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Profile During Issues**: Enable profiling when you're experiencing memory issues, not all the time, as it adds some overhead.
|
||||
|
||||
2. **Profile Specific Modules**: Instead of profiling everything, focus on the modules you suspect are causing issues.
|
||||
|
||||
3. **Let Processes Run**: Allow processes to run for a meaningful duration to capture representative memory usage patterns.
|
||||
|
||||
4. **Check Binary Files**: If HTML reports aren't generated automatically (e.g., after a crash), check for `.bin` files in `/config/memray_reports/` and generate reports manually.
|
||||
|
||||
5. **Compare Reports**: Generate reports at different times to compare memory usage patterns and identify trends.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### No Reports Generated
|
||||
|
||||
- Check that the environment variable is set correctly
|
||||
- Verify the module name matches exactly (case-sensitive)
|
||||
- Check logs for memray-related errors
|
||||
- Ensure `/config/memray_reports/` directory exists and is writable
|
||||
|
||||
### Process Crashed Before Report Generation
|
||||
|
||||
- Look for `.bin` files in `/config/memray_reports/`
|
||||
- Manually generate HTML reports using: `memray flamegraph <file>.bin`
|
||||
- The binary file contains all data up to the crash point
|
||||
|
||||
### Reports Show No Data
|
||||
|
||||
- Ensure the process ran long enough to generate meaningful data
|
||||
- Check that memray is properly installed (included by default in Frigate)
|
||||
- Verify the process actually started and ran (check process logs)
|
||||
|
||||
## Example Usage
|
||||
|
||||
```bash
|
||||
# Enable profiling for review and capture modules
|
||||
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
|
||||
|
||||
# Start Frigate
|
||||
# ... let it run for a while ...
|
||||
|
||||
# Check for reports
|
||||
ls -lh /config/memray_reports/
|
||||
|
||||
# If a process crashed, manually generate report
|
||||
memray flamegraph /config/memray_reports/frigate_capture_front_door.bin
|
||||
```
|
||||
|
||||
For more information about memray and interpreting reports, see the [official memray documentation](https://bloomberg.github.io/memray/).
|
||||
@ -131,6 +131,7 @@ const sidebars: SidebarsConfig = {
|
||||
"troubleshooting/recordings",
|
||||
"troubleshooting/gpu",
|
||||
"troubleshooting/edgetpu",
|
||||
"troubleshooting/memory",
|
||||
],
|
||||
Development: [
|
||||
"development/contributing",
|
||||
|
||||
87
frigate/detectors/plugins/axengine.py
Normal file
87
frigate/detectors/plugins/axengine.py
Normal file
@ -0,0 +1,87 @@
|
||||
import logging
|
||||
import os.path
|
||||
import re
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
import axengine as axe
|
||||
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.util.model import post_process_yolo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "axengine"
|
||||
|
||||
supported_models = {
|
||||
ModelTypeEnum.yologeneric: "frigate-yolov9-.*$",
|
||||
}
|
||||
|
||||
model_cache_dir = os.path.join(MODEL_CACHE_DIR, "axengine_cache/")
|
||||
|
||||
|
||||
class AxengineDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
|
||||
class Axengine(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
def __init__(self, config: AxengineDetectorConfig):
|
||||
logger.info("__init__ axengine")
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
model_path = config.model.path or "frigate-yolov9-tiny"
|
||||
model_props = self.parse_model_input(model_path)
|
||||
self.session = axe.InferenceSession(model_props["path"])
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
|
||||
def parse_model_input(self, model_path):
|
||||
model_props = {}
|
||||
model_props["preset"] = True
|
||||
|
||||
model_matched = False
|
||||
|
||||
for model_type, pattern in supported_models.items():
|
||||
if re.match(pattern, model_path):
|
||||
model_matched = True
|
||||
model_props["model_type"] = model_type
|
||||
|
||||
if model_matched:
|
||||
model_props["filename"] = model_path + ".axmodel"
|
||||
model_props["path"] = model_cache_dir + model_props["filename"]
|
||||
|
||||
if not os.path.isfile(model_props["path"]):
|
||||
self.download_model(model_props["filename"])
|
||||
else:
|
||||
supported_models_str = ", ".join(
|
||||
model[1:-1] for model in supported_models
|
||||
)
|
||||
raise Exception(
|
||||
f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
|
||||
)
|
||||
return model_props
|
||||
|
||||
def download_model(self, filename):
|
||||
if not os.path.isdir(model_cache_dir):
|
||||
os.mkdir(model_cache_dir)
|
||||
|
||||
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
|
||||
urllib.request.urlretrieve(
|
||||
f"{GITHUB_ENDPOINT}/ivanshi1108/assets/releases/download/v0.16.2/{filename}",
|
||||
model_cache_dir + filename,
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
results = None
|
||||
results = self.session.run(None, {"images": tensor_input})
|
||||
if self.detector_config.model.model_type == ModelTypeEnum.yologeneric:
|
||||
return post_process_yolo(results, self.width, self.height)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
|
||||
)
|
||||
|
||||
@ -1,7 +1,10 @@
|
||||
import atexit
|
||||
import faulthandler
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
import threading
|
||||
from logging.handlers import QueueHandler
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
@ -48,6 +51,7 @@ class FrigateProcess(BaseProcess):
|
||||
|
||||
def before_start(self) -> None:
|
||||
self.__log_queue = frigate.log.log_listener.queue
|
||||
self.__memray_tracker = None
|
||||
|
||||
def pre_run_setup(self, logConfig: LoggerConfig | None = None) -> None:
|
||||
os.nice(self.priority)
|
||||
@ -64,3 +68,86 @@ class FrigateProcess(BaseProcess):
|
||||
frigate.log.apply_log_levels(
|
||||
logConfig.default.value.upper(), logConfig.logs
|
||||
)
|
||||
|
||||
self._setup_memray()
|
||||
|
||||
def _setup_memray(self) -> None:
|
||||
"""Setup memray profiling if enabled via environment variable."""
|
||||
memray_modules = os.environ.get("FRIGATE_MEMRAY_MODULES", "")
|
||||
|
||||
if not memray_modules:
|
||||
return
|
||||
|
||||
# Extract module name from process name (e.g., "frigate.capture:camera" -> "frigate.capture")
|
||||
process_name = self.name
|
||||
module_name = (
|
||||
process_name.split(":")[0] if ":" in process_name else process_name
|
||||
)
|
||||
|
||||
enabled_modules = [m.strip() for m in memray_modules.split(",")]
|
||||
|
||||
if module_name not in enabled_modules and process_name not in enabled_modules:
|
||||
return
|
||||
|
||||
try:
|
||||
import memray
|
||||
|
||||
reports_dir = pathlib.Path("/config/memray_reports")
|
||||
reports_dir.mkdir(parents=True, exist_ok=True)
|
||||
safe_name = (
|
||||
process_name.replace(":", "_").replace("/", "_").replace("\\", "_")
|
||||
)
|
||||
|
||||
binary_file = reports_dir / f"{safe_name}.bin"
|
||||
|
||||
self.__memray_tracker = memray.Tracker(str(binary_file))
|
||||
self.__memray_tracker.__enter__()
|
||||
|
||||
# Register cleanup handler to stop tracking and generate HTML report
|
||||
# atexit runs on normal exits and most signal-based terminations (SIGTERM, SIGINT)
|
||||
# For hard kills (SIGKILL) or segfaults, the binary file is preserved for manual generation
|
||||
atexit.register(self._cleanup_memray, safe_name, binary_file)
|
||||
|
||||
self.logger.info(
|
||||
f"Memray profiling enabled for module {module_name} (process: {self.name}). "
|
||||
f"Binary file (updated continuously): {binary_file}. "
|
||||
f"HTML report will be generated on exit: {reports_dir}/{safe_name}.html. "
|
||||
f"If process crashes, manually generate with: memray flamegraph {binary_file}"
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to setup memray profiling: {e}", exc_info=True)
|
||||
|
||||
def _cleanup_memray(self, safe_name: str, binary_file: pathlib.Path) -> None:
|
||||
"""Stop memray tracking and generate HTML report."""
|
||||
if self.__memray_tracker is None:
|
||||
return
|
||||
|
||||
try:
|
||||
self.__memray_tracker.__exit__(None, None, None)
|
||||
self.__memray_tracker = None
|
||||
|
||||
reports_dir = pathlib.Path("/config/memray_reports")
|
||||
html_file = reports_dir / f"{safe_name}.html"
|
||||
|
||||
result = subprocess.run(
|
||||
["memray", "flamegraph", "--output", str(html_file), str(binary_file)],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=10,
|
||||
)
|
||||
|
||||
if result.returncode == 0:
|
||||
self.logger.info(f"Memray report generated: {html_file}")
|
||||
else:
|
||||
self.logger.error(
|
||||
f"Failed to generate memray report: {result.stderr}. "
|
||||
f"Binary file preserved at {binary_file} for manual generation."
|
||||
)
|
||||
|
||||
# Keep the binary file for manual report generation if needed
|
||||
# Users can run: memray flamegraph {binary_file}
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
self.logger.error("Memray report generation timed out")
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to cleanup memray profiling: {e}", exc_info=True)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user