mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-17 18:46:42 +03:00
Compare commits
6 Commits
2c483e8ab5
...
4bf1492e2d
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4bf1492e2d | ||
|
|
fb4fe8c430 | ||
|
|
ecb59ff943 | ||
|
|
4dfea29f28 | ||
|
|
6c172ed095 | ||
|
|
cc76a57ce5 |
@ -157,3 +157,19 @@ Only one `speech` event may be transcribed at a time. Frigate does not automatic
|
||||
:::
|
||||
|
||||
Recorded `speech` events will always use a `whisper` model, regardless of the `model_size` config setting. Without a supported Nvidia GPU, generating transcriptions for longer `speech` events may take a fair amount of time, so be patient.
|
||||
|
||||
#### FAQ
|
||||
|
||||
1. Why doesn't Frigate automatically transcribe all `speech` events?
|
||||
|
||||
Frigate does not implement a queue mechanism for speech transcription, and adding one is not trivial. A proper queue would need backpressure, prioritization, memory/disk buffering, retry logic, crash recovery, and safeguards to prevent unbounded growth when events outpace processing. That’s a significant amount of complexity for a feature that, in most real-world environments, would mostly just churn through low-value noise.
|
||||
|
||||
Because transcription is **serialized (one event at a time)** and speech events can be generated far faster than they can be processed, an auto-transcribe toggle would very quickly create an ever-growing backlog and degrade core functionality. For the amount of engineering and risk involved, it adds **very little practical value** for the majority of deployments, which are often on low-powered, edge hardware.
|
||||
|
||||
If you hear speech that’s actually important and worth saving/indexing for the future, **just press the transcribe button in Explore** on that specific `speech` event - that keeps things explicit, reliable, and under your control.
|
||||
|
||||
2. Why don't you save live transcription text and use that for `speech` events?
|
||||
|
||||
There’s no guarantee that a `speech` event is even created from the exact audio that went through the transcription model. Live transcription and `speech` event creation are **separate, asynchronous processes**. Even when both are correctly configured, trying to align the **precise start and end time of a speech event** with whatever audio the model happened to be processing at that moment is unreliable.
|
||||
|
||||
Automatically persisting that data would often result in **misaligned, partial, or irrelevant transcripts**, while still incurring all of the CPU, storage, and privacy costs of transcription. That’s why Frigate treats transcription as an **explicit, user-initiated action** rather than an automatic side-effect of every `speech` event.
|
||||
|
||||
@ -99,6 +99,42 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
if self.inference_speed:
|
||||
self.inference_speed.update(duration)
|
||||
|
||||
def _should_save_image(
|
||||
self, camera: str, detected_state: str, score: float = 1.0
|
||||
) -> bool:
|
||||
"""
|
||||
Determine if we should save the image for training.
|
||||
Save when:
|
||||
- State is changing or being verified (regardless of score)
|
||||
- Score is less than 100% (even if state matches, useful for training)
|
||||
Don't save when:
|
||||
- State is stable (matches current_state) AND score is 100%
|
||||
"""
|
||||
if camera not in self.state_history:
|
||||
# First detection for this camera, save it
|
||||
return True
|
||||
|
||||
verification = self.state_history[camera]
|
||||
current_state = verification.get("current_state")
|
||||
pending_state = verification.get("pending_state")
|
||||
|
||||
# Save if there's a pending state change being verified
|
||||
if pending_state is not None:
|
||||
return True
|
||||
|
||||
# Save if the detected state differs from the current verified state
|
||||
# (state is changing)
|
||||
if current_state is not None and detected_state != current_state:
|
||||
return True
|
||||
|
||||
# If score is less than 100%, save even if state matches
|
||||
# (useful for training to improve confidence)
|
||||
if score < 1.0:
|
||||
return True
|
||||
|
||||
# Don't save if state is stable (detected_state == current_state) AND score is 100%
|
||||
return False
|
||||
|
||||
def verify_state_change(self, camera: str, detected_state: str) -> str | None:
|
||||
"""
|
||||
Verify state change requires 3 consecutive identical states before publishing.
|
||||
@ -212,14 +248,16 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
return
|
||||
|
||||
if self.interpreter is None:
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
)
|
||||
# When interpreter is None, always save (score is 0.0, which is < 1.0)
|
||||
if self._should_save_image(camera, "unknown", 0.0):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
)
|
||||
return
|
||||
|
||||
input = np.expand_dims(resized_frame, axis=0)
|
||||
@ -236,14 +274,17 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
score = round(probs[best_id], 2)
|
||||
self.__update_metrics(datetime.datetime.now().timestamp() - now)
|
||||
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
self.labelmap[best_id],
|
||||
score,
|
||||
)
|
||||
detected_state = self.labelmap[best_id]
|
||||
|
||||
if self._should_save_image(camera, detected_state, score):
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
"none-none",
|
||||
now,
|
||||
detected_state,
|
||||
score,
|
||||
)
|
||||
|
||||
if score < self.model_config.threshold:
|
||||
logger.debug(
|
||||
@ -251,7 +292,6 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
)
|
||||
return
|
||||
|
||||
detected_state = self.labelmap[best_id]
|
||||
verified_state = self.verify_state_change(camera, detected_state)
|
||||
|
||||
if verified_state is not None:
|
||||
|
||||
@ -190,7 +190,11 @@ class OnvifController:
|
||||
ptz: ONVIFService = await onvif.create_ptz_service()
|
||||
self.cams[camera_name]["ptz"] = ptz
|
||||
|
||||
imaging: ONVIFService = await onvif.create_imaging_service()
|
||||
try:
|
||||
imaging: ONVIFService = await onvif.create_imaging_service()
|
||||
except (Fault, ONVIFError, TransportError, Exception) as e:
|
||||
logger.debug(f"Imaging service not supported for {camera_name}: {e}")
|
||||
imaging = None
|
||||
self.cams[camera_name]["imaging"] = imaging
|
||||
try:
|
||||
video_sources = await media.GetVideoSources()
|
||||
@ -381,7 +385,10 @@ class OnvifController:
|
||||
f"Disabling autotracking zooming for {camera_name}: Absolute zoom not supported. Exception: {e}"
|
||||
)
|
||||
|
||||
if self.cams[camera_name]["video_source_token"] is not None:
|
||||
if (
|
||||
self.cams[camera_name]["video_source_token"] is not None
|
||||
and imaging is not None
|
||||
):
|
||||
try:
|
||||
imaging_capabilities = await imaging.GetImagingSettings(
|
||||
{"VideoSourceToken": self.cams[camera_name]["video_source_token"]}
|
||||
@ -421,6 +428,7 @@ class OnvifController:
|
||||
if (
|
||||
"focus" in self.cams[camera_name]["features"]
|
||||
and self.cams[camera_name]["video_source_token"]
|
||||
and self.cams[camera_name]["imaging"] is not None
|
||||
):
|
||||
try:
|
||||
stop_request = self.cams[camera_name]["imaging"].create_type("Stop")
|
||||
@ -648,6 +656,7 @@ class OnvifController:
|
||||
if (
|
||||
"focus" not in self.cams[camera_name]["features"]
|
||||
or not self.cams[camera_name]["video_source_token"]
|
||||
or self.cams[camera_name]["imaging"] is None
|
||||
):
|
||||
logger.error(f"{camera_name} does not support ONVIF continuous focus.")
|
||||
return
|
||||
|
||||
@ -478,33 +478,32 @@ export default function AuthenticationView({
|
||||
<TableCell className="text-right">
|
||||
<TooltipProvider>
|
||||
<div className="flex items-center justify-end gap-2">
|
||||
{user.username !== "admin" &&
|
||||
user.username !== "viewer" && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
size="sm"
|
||||
variant="outline"
|
||||
className="h-8 px-2"
|
||||
onClick={() => {
|
||||
setSelectedUser(user.username);
|
||||
setSelectedUserRole(
|
||||
user.role || "viewer",
|
||||
);
|
||||
setShowRoleChange(true);
|
||||
}}
|
||||
>
|
||||
<LuUserCog className="size-3.5" />
|
||||
<span className="ml-1.5 hidden sm:inline-block">
|
||||
{t("role.title", { ns: "common" })}
|
||||
</span>
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
<p>{t("users.table.changeRole")}</p>
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
)}
|
||||
{user.username !== "admin" && (
|
||||
<Tooltip>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
size="sm"
|
||||
variant="outline"
|
||||
className="h-8 px-2"
|
||||
onClick={() => {
|
||||
setSelectedUser(user.username);
|
||||
setSelectedUserRole(
|
||||
user.role || "viewer",
|
||||
);
|
||||
setShowRoleChange(true);
|
||||
}}
|
||||
>
|
||||
<LuUserCog className="size-3.5" />
|
||||
<span className="ml-1.5 hidden sm:inline-block">
|
||||
{t("role.title", { ns: "common" })}
|
||||
</span>
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
<p>{t("users.table.changeRole")}</p>
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
)}
|
||||
|
||||
<Tooltip>
|
||||
<TooltipTrigger asChild>
|
||||
|
||||
Loading…
Reference in New Issue
Block a user