mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-02 09:15:22 +03:00
complete edgetpu refactoring
This commit is contained in:
parent
c7b3330265
commit
f8118adf6b
@ -960,7 +960,7 @@ class FrigateConfig(FrigateBaseModel):
|
||||
# check runtime config
|
||||
decoder_config = (
|
||||
camera_config.ffmpeg
|
||||
if "ffmpeg" in camera_config
|
||||
if camera_config.ffmpeg is not None
|
||||
else camera_config.gstreamer
|
||||
)
|
||||
assigned_roles = list(
|
||||
|
||||
@ -9,10 +9,10 @@ from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
|
||||
# import tflite_runtime.interpreter as tflite
|
||||
import tflite_runtime.interpreter as tflite
|
||||
|
||||
|
||||
# from tflite_runtime.interpreter import load_delegate
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
|
||||
from frigate.util import EventsPerSecond
|
||||
from .object_detector import ObjectDetector
|
||||
@ -27,7 +27,7 @@ def object_detector_factory(detector_config: DetectorConfig, model_path: str):
|
||||
):
|
||||
return None
|
||||
object_detector = LocalObjectDetector(
|
||||
tf_device=detector_config.device,
|
||||
tf_device=detector_config.type,
|
||||
model_path=model_path,
|
||||
num_threads=detector_config.num_threads,
|
||||
)
|
||||
@ -49,77 +49,74 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
edge_tpu_delegate = None
|
||||
|
||||
# if tf_device != "cpu":
|
||||
# try:
|
||||
# logger.info(f"Attempting to load TPU as {device_config['device']}")
|
||||
# edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
|
||||
# logger.info("TPU found")
|
||||
# self.interpreter = tflite.Interpreter(
|
||||
# model_path=model_path or "/edgetpu_model.tflite",
|
||||
# experimental_delegates=[edge_tpu_delegate],
|
||||
# )
|
||||
# except ValueError:
|
||||
# logger.error(
|
||||
# "No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
|
||||
# )
|
||||
# raise
|
||||
# else:
|
||||
# logger.warning(
|
||||
# "CPU detectors are not recommended and should only be used for testing or for trial purposes."
|
||||
# )
|
||||
# self.interpreter = tflite.Interpreter(
|
||||
# model_path=model_path or "/cpu_model.tflite", num_threads=num_threads
|
||||
# )
|
||||
if tf_device != "cpu":
|
||||
try:
|
||||
logger.info(f"Attempting to load TPU as {device_config['device']}")
|
||||
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
|
||||
logger.info("TPU found")
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path=model_path or "/edgetpu_model.tflite",
|
||||
experimental_delegates=[edge_tpu_delegate],
|
||||
)
|
||||
except ValueError:
|
||||
logger.error(
|
||||
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
|
||||
)
|
||||
raise
|
||||
else:
|
||||
logger.warning(
|
||||
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
|
||||
)
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path=model_path or "/cpu_model.tflite", num_threads=num_threads
|
||||
)
|
||||
|
||||
# self.interpreter.allocate_tensors()
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
# self.tensor_input_details = self.interpreter.get_input_details()
|
||||
# self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect(self, tensor_input, threshold=0.4):
|
||||
# TODO: called from process_clip
|
||||
# TODO: process_clip
|
||||
detections = []
|
||||
assert False, "implement detect() for process_clip.py"
|
||||
|
||||
# raw_detections = self.detect_raw(tensor_input)
|
||||
raw_detections = self.detect_raw(tensor_input)
|
||||
|
||||
# for d in raw_detections:
|
||||
# if d[1] < threshold:
|
||||
# break
|
||||
# detections.append(
|
||||
# (self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
# )
|
||||
# self.fps.update()
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append(
|
||||
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
)
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
logger.error(">>>>>>>>>> detect raw")
|
||||
|
||||
# Expand dimensions [height, width, 3] ince the model expects images to have shape [1, height, width, 3]
|
||||
tensor_input = np.expand_dims(tensor_input, axis=0)
|
||||
|
||||
# self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
# self.interpreter.invoke()
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
|
||||
# boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||
# class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||
# scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||
# count = int(
|
||||
# self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
||||
# )
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||
count = int(
|
||||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
# for i in range(count):
|
||||
# if scores[i] < 0.4 or i == 20:
|
||||
# break
|
||||
# detections[i] = [
|
||||
# class_ids[i],
|
||||
# float(scores[i]),
|
||||
# boxes[i][0],
|
||||
# boxes[i][1],
|
||||
# boxes[i][2],
|
||||
# boxes[i][3],
|
||||
# ]
|
||||
for i in range(count):
|
||||
if scores[i] < 0.4 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
class_ids[i],
|
||||
float(scores[i]),
|
||||
boxes[i][0],
|
||||
boxes[i][1],
|
||||
boxes[i][2],
|
||||
boxes[i][3],
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
Loading…
Reference in New Issue
Block a user