mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-22 20:18:30 +03:00
Fix broken mqtt links
This commit is contained in:
parent
c85463dc8c
commit
f5d4741a4a
@ -11,7 +11,7 @@ By default, descriptions will be generated for all tracked objects and all zones
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
Generative AI object descriptions can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt/#frigatecamera_nameobjectdescriptionsset).
|
||||
Generative AI object descriptions can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt#frigatecamera_nameobjectdescriptionsset).
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
@ -42,10 +42,10 @@ genai:
|
||||
model: llava
|
||||
|
||||
objects:
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overridden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
|
||||
@ -7,7 +7,7 @@ Generative AI can be used to automatically generate structured summaries of revi
|
||||
|
||||
Requests for a summary are requested automatically to your AI provider for alert review items when the activity has ended, they can also be optionally enabled for detections as well.
|
||||
|
||||
Generative AI review summaries can also be toggled dynamically for a [camera via MQTT](/integrations/mqtt/#frigatecamera_namereviewdescriptionsset).
|
||||
Generative AI review summaries can also be toggled dynamically for a [camera via MQTT](/integrations/mqtt#frigatecamera_namereviewdescriptionsset).
|
||||
|
||||
## Review Summary Usage and Best Practices
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user