mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
[Update] Update detector script coding format
This commit is contained in:
parent
5bda917b31
commit
f2df550a2a
@ -10,7 +10,11 @@ from synap.preprocessor import Preprocessor
|
|||||||
from synap.postprocessor import Detector
|
from synap.postprocessor import Detector
|
||||||
|
|
||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum, InputTensorEnum
|
from frigate.detectors.detector_config import (
|
||||||
|
BaseDetectorConfig,
|
||||||
|
ModelTypeEnum,
|
||||||
|
InputTensorEnum,
|
||||||
|
)
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -20,6 +24,7 @@ DETECTOR_KEY = "synaptics"
|
|||||||
class SynapDetectorConfig(BaseDetectorConfig):
|
class SynapDetectorConfig(BaseDetectorConfig):
|
||||||
type: Literal[DETECTOR_KEY]
|
type: Literal[DETECTOR_KEY]
|
||||||
|
|
||||||
|
|
||||||
class SynapDetector(DetectionApi):
|
class SynapDetector(DetectionApi):
|
||||||
type_key = DETECTOR_KEY
|
type_key = DETECTOR_KEY
|
||||||
|
|
||||||
@ -37,7 +42,8 @@ class SynapDetector(DetectionApi):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to init Synap NPU: {e}")
|
logger.error(f"Failed to init Synap NPU: {e}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
self.width = detector_config.model.width
|
self.width = detector_config.model.width
|
||||||
self.height = detector_config.model.height
|
self.height = detector_config.model.height
|
||||||
self.model_type = detector_config.model.model_type
|
self.model_type = detector_config.model.model_type
|
||||||
@ -52,28 +58,32 @@ class SynapDetector(DetectionApi):
|
|||||||
def detect_raw(self, tensor_input: np.ndarray):
|
def detect_raw(self, tensor_input: np.ndarray):
|
||||||
# It has only been testing for pre-converted mobilenet80 .tflite -> .synap model currently
|
# It has only been testing for pre-converted mobilenet80 .tflite -> .synap model currently
|
||||||
layout = Layout.nhwc # default layout
|
layout = Layout.nhwc # default layout
|
||||||
|
detections = np.zeros((20, 6), np.float32)
|
||||||
|
|
||||||
if self.input_tensor_layout == InputTensorEnum.nhwc:
|
if self.input_tensor_layout == InputTensorEnum.nhwc:
|
||||||
layout = Layout.nhwc
|
layout = Layout.nhwc
|
||||||
|
|
||||||
postprocess_data = self.preprocessor.assign(self.network.inputs, tensor_input, Shape(tensor_input.shape), layout)
|
postprocess_data = self.preprocessor.assign(
|
||||||
|
self.network.inputs, tensor_input, Shape(tensor_input.shape), layout
|
||||||
|
)
|
||||||
output_tensor_obj = self.network.predict()
|
output_tensor_obj = self.network.predict()
|
||||||
output = self.detector.process(output_tensor_obj, postprocess_data)
|
output = self.detector.process(output_tensor_obj, postprocess_data)
|
||||||
|
|
||||||
if self.model_type == ModelTypeEnum.ssd:
|
if self.model_type == ModelTypeEnum.ssd:
|
||||||
detections = np.zeros((20, 6), np.float32)
|
|
||||||
|
|
||||||
for i, item in enumerate(output.items):
|
for i, item in enumerate(output.items):
|
||||||
if i == 20:
|
if i == 20:
|
||||||
break
|
break
|
||||||
|
|
||||||
bb = item.bounding_box
|
bb = item.bounding_box
|
||||||
|
|
||||||
|
|
||||||
# Convert corner coordinates to normalized [0,1] range
|
# Convert corner coordinates to normalized [0,1] range
|
||||||
x1 = bb.origin.x / self.width # Top-left X
|
x1 = bb.origin.x / self.width # Top-left X
|
||||||
y1 = bb.origin.y / self.height # Top-left Y
|
y1 = bb.origin.y / self.height # Top-left Y
|
||||||
x2 = (bb.origin.x + bb.size.x) / self.width # Bottom-right X
|
x2 = (bb.origin.x + bb.size.x) / self.width # Bottom-right X
|
||||||
y2 = (bb.origin.y + bb.size.y) / self.height # Bottom-right Y
|
y2 = (bb.origin.y + bb.size.y) / self.height # Bottom-right Y
|
||||||
|
|
||||||
|
|
||||||
detections[i] = [
|
detections[i] = [
|
||||||
item.class_index,
|
item.class_index,
|
||||||
float(item.confidence),
|
float(item.confidence),
|
||||||
@ -82,9 +92,8 @@ class SynapDetector(DetectionApi):
|
|||||||
y2,
|
y2,
|
||||||
x2,
|
x2,
|
||||||
]
|
]
|
||||||
|
|
||||||
return detections
|
|
||||||
else:
|
else:
|
||||||
print(f"Unsupported model type: {self.model_type}")
|
logger.error(f"Unsupported model type: {self.model_type}")
|
||||||
return np.zeros((20, 6), np.float32)
|
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user