mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-08 12:15:25 +03:00
detectors/edgetpu: add support for yolov8 models
This commit is contained in:
parent
44d8cdbba1
commit
e9a9467b36
@ -6,6 +6,7 @@ from typing_extensions import Literal
|
|||||||
|
|
||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
from frigate.detectors.util import yolov8_postprocess
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||||
@ -54,11 +55,29 @@ class EdgeTpuTfl(DetectionApi):
|
|||||||
|
|
||||||
self.tensor_input_details = self.interpreter.get_input_details()
|
self.tensor_input_details = self.interpreter.get_input_details()
|
||||||
self.tensor_output_details = self.interpreter.get_output_details()
|
self.tensor_output_details = self.interpreter.get_output_details()
|
||||||
|
self.model_type = detector_config.model.model_type
|
||||||
|
|
||||||
def detect_raw(self, tensor_input):
|
def detect_raw(self, tensor_input):
|
||||||
|
if self.model_type == "yolov8":
|
||||||
|
scale, zero_point = self.tensor_input_details[0]["quantization"]
|
||||||
|
tensor_input = (
|
||||||
|
(tensor_input - scale * zero_point * 255) * (1.0 / (scale * 255))
|
||||||
|
).astype(self.tensor_input_details[0]["dtype"])
|
||||||
|
|
||||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||||
self.interpreter.invoke()
|
self.interpreter.invoke()
|
||||||
|
|
||||||
|
if self.model_type == "yolov8":
|
||||||
|
scale, zero_point = self.tensor_output_details[0]["quantization"]
|
||||||
|
tensor_output = self.interpreter.get_tensor(
|
||||||
|
self.tensor_output_details[0]["index"]
|
||||||
|
)
|
||||||
|
tensor_output = (tensor_output.astype(np.float32) - zero_point) * scale
|
||||||
|
model_input_shape = self.tensor_input_details[0]["shape"]
|
||||||
|
tensor_output[:, [0, 2]] *= model_input_shape[2]
|
||||||
|
tensor_output[:, [1, 3]] *= model_input_shape[1]
|
||||||
|
return yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user