detectors/edgetpu: add support for yolov8 models

This commit is contained in:
Indrek Mandre 2024-02-10 17:56:46 +02:00
parent 44d8cdbba1
commit e9a9467b36

View File

@ -6,6 +6,7 @@ from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.detectors.util import yolov8_postprocess
try: try:
from tflite_runtime.interpreter import Interpreter, load_delegate from tflite_runtime.interpreter import Interpreter, load_delegate
@ -54,11 +55,29 @@ class EdgeTpuTfl(DetectionApi):
self.tensor_input_details = self.interpreter.get_input_details() self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details() self.tensor_output_details = self.interpreter.get_output_details()
self.model_type = detector_config.model.model_type
def detect_raw(self, tensor_input): def detect_raw(self, tensor_input):
if self.model_type == "yolov8":
scale, zero_point = self.tensor_input_details[0]["quantization"]
tensor_input = (
(tensor_input - scale * zero_point * 255) * (1.0 / (scale * 255))
).astype(self.tensor_input_details[0]["dtype"])
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke() self.interpreter.invoke()
if self.model_type == "yolov8":
scale, zero_point = self.tensor_output_details[0]["quantization"]
tensor_output = self.interpreter.get_tensor(
self.tensor_output_details[0]["index"]
)
tensor_output = (tensor_output.astype(np.float32) - zero_point) * scale
model_input_shape = self.tensor_input_details[0]["shape"]
tensor_output[:, [0, 2]] *= model_input_shape[2]
tensor_output[:, [1, 3]] *= model_input_shape[1]
return yolov8_postprocess(model_input_shape, tensor_output)
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]