Use average of boxes instead of average of iou

This commit is contained in:
Nicolas Mowen 2024-02-24 07:39:04 -07:00
parent f61b06fd61
commit e82befb53e
2 changed files with 22 additions and 10 deletions

View File

@ -17,6 +17,7 @@ from frigate.ptz.autotrack import PtzMotionEstimator
from frigate.track import ObjectTracker
from frigate.types import PTZMetricsTypes
from frigate.util.image import intersection_over_union
from frigate.util.object import average_boxes
logger = logging.getLogger(__name__)
@ -132,7 +133,7 @@ class NorfairTracker(ObjectTracker):
"xmax": self.detect_config.width,
"ymax": self.detect_config.height,
}
self.stationary_iou[id] = []
self.stationary_box_history[id] = []
def deregister(self, id, track_id):
del self.tracked_objects[id]
@ -146,13 +147,6 @@ class NorfairTracker(ObjectTracker):
# returns False if the object has moved outside its previous position
def update_position(self, id: str, box: list[int, int, int, int]):
position = self.positions[id]
position_box = (
position["xmin"],
position["ymin"],
position["xmax"],
position["ymax"],
)
self.stationary_box_history[id].append(box)
if len(self.stationary_box_history[id]) > MAX_STATIONARY_HISTORY:
@ -161,7 +155,9 @@ class NorfairTracker(ObjectTracker):
]
# TODO calculate mean of boxes
avg_iou = np.mean(self.stationary_iou[id])
avg_iou = intersection_over_union(
box, average_boxes(self.stationary_box_history[id])
)
xmin, ymin, xmax, ymax = box
@ -234,7 +230,7 @@ class NorfairTracker(ObjectTracker):
):
self.tracked_objects[id]["position_changes"] += 1
self.tracked_objects[id]["motionless_count"] = 0
self.stationary_iou[id] = []
self.stationary_box_history[id] = []
self.tracked_objects[id].update(obj)

View File

@ -323,6 +323,22 @@ def reduce_boxes(boxes, iou_threshold=0.0):
return [tuple(c) for c in clusters]
def average_boxes(boxes: list[list[int, int, int, int]]) -> list[int, int, int, int]:
"""Return a box that is the average of a list of boxes."""
x_mins = []
y_mins = []
x_max = []
y_max = []
for box in boxes:
x_mins.append(box[0])
y_mins.append(box[1])
x_max.append(box[2])
y_max.append(box[3])
return [np.mean(x_mins), np.mean(y_mins), np.mean(x_max), np.mean(y_max)]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):