mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-05 10:45:21 +03:00
create a simplified motion detector
This commit is contained in:
parent
3c58d44f91
commit
e344dea4c3
103
benchmark_motion.py
Normal file
103
benchmark_motion.py
Normal file
@ -0,0 +1,103 @@
|
||||
import datetime
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
from statistics import mean
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
from frigate.motion.frigate_motion import FrigateMotionDetector
|
||||
from frigate.motion.improved_motion import ImprovedMotionDetector
|
||||
|
||||
# get info on the video
|
||||
# cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4")
|
||||
# cap = cv2.VideoCapture("debug/motion_test_clips/rain_1.mp4")
|
||||
cap = cv2.VideoCapture("debug/motion_test_clips/low_contrast_ir.mp4")
|
||||
# cap = cv2.VideoCapture("airport.mp4")
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
frame_shape = (height, width, 3)
|
||||
|
||||
# create the motion config
|
||||
motion_config = MotionConfig()
|
||||
motion_config.mask = np.zeros((height, width), np.uint8)
|
||||
motion_config.mask[:] = 255
|
||||
motion_config.improve_contrast = 1
|
||||
motion_config.frame_alpha = 0.02
|
||||
motion_config.threshold = 40
|
||||
motion_config.contour_area = 15
|
||||
save_images = True
|
||||
|
||||
# create motion detectors
|
||||
frigate_motion_detector = FrigateMotionDetector(
|
||||
frame_shape=frame_shape,
|
||||
config=motion_config,
|
||||
fps=fps,
|
||||
improve_contrast=mp.Value("i", motion_config.improve_contrast),
|
||||
threshold=mp.Value("i", motion_config.threshold),
|
||||
contour_area=mp.Value("i", motion_config.contour_area),
|
||||
)
|
||||
frigate_motion_detector.save_images = save_images
|
||||
|
||||
improved_motion_detector = ImprovedMotionDetector(
|
||||
frame_shape=frame_shape,
|
||||
config=motion_config,
|
||||
fps=fps,
|
||||
improve_contrast=mp.Value("i", motion_config.improve_contrast),
|
||||
threshold=mp.Value("i", motion_config.threshold),
|
||||
contour_area=mp.Value("i", motion_config.contour_area),
|
||||
)
|
||||
improved_motion_detector.save_images = save_images
|
||||
|
||||
# read and process frames
|
||||
frame_times = {"frigate": [], "improved": []}
|
||||
ret, frame = cap.read()
|
||||
frame_counter = 1
|
||||
while ret:
|
||||
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
frigate_motion_detector.detect(yuv_frame)
|
||||
frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame)
|
||||
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
improved_motion_detector.detect(yuv_frame)
|
||||
frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame)
|
||||
|
||||
frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg"
|
||||
improved_frame = f"debug/frames/improved-{frame_counter}.jpg"
|
||||
if os.path.exists(frigate_frame) and os.path.exists(improved_frame):
|
||||
image_row_1 = cv2.hconcat(
|
||||
[
|
||||
cv2.imread(frigate_frame),
|
||||
cv2.imread(improved_frame),
|
||||
]
|
||||
)
|
||||
|
||||
image_row_2 = cv2.resize(
|
||||
frame,
|
||||
dsize=(
|
||||
frigate_motion_detector.motion_frame_size[1] * 2,
|
||||
frigate_motion_detector.motion_frame_size[0] * 2,
|
||||
),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/all-{frame_counter}.jpg",
|
||||
cv2.vconcat([image_row_1, image_row_2]),
|
||||
)
|
||||
os.unlink(frigate_frame)
|
||||
os.unlink(improved_frame)
|
||||
frame_counter += 1
|
||||
|
||||
ret, frame = cap.read()
|
||||
|
||||
cap.release()
|
||||
|
||||
print("Frigate Motion Detector")
|
||||
print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms")
|
||||
print("Improved Motion Detector")
|
||||
print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms")
|
||||
@ -12,9 +12,9 @@ class FrigateMotionDetector(MotionDetector):
|
||||
frame_shape,
|
||||
config: MotionConfig,
|
||||
fps: int,
|
||||
improve_contrast_enabled,
|
||||
motion_threshold,
|
||||
motion_contour_area,
|
||||
improve_contrast,
|
||||
threshold,
|
||||
contour_area,
|
||||
):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
@ -34,9 +34,9 @@ class FrigateMotionDetector(MotionDetector):
|
||||
)
|
||||
self.mask = np.where(resized_mask == [0])
|
||||
self.save_images = False
|
||||
self.improve_contrast = improve_contrast_enabled
|
||||
self.threshold = motion_threshold
|
||||
self.contour_area = motion_contour_area
|
||||
self.improve_contrast = improve_contrast
|
||||
self.threshold = threshold
|
||||
self.contour_area = contour_area
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
@ -132,18 +132,10 @@ class FrigateMotionDetector(MotionDetector):
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
# print("--------")
|
||||
image_row_1 = cv2.hconcat(
|
||||
[
|
||||
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
|
||||
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
|
||||
]
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated
|
||||
)
|
||||
image_row_2 = cv2.hconcat(
|
||||
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
|
||||
)
|
||||
combined_image = cv2.vconcat([image_row_1, image_row_2])
|
||||
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
|
||||
126
frigate/motion/improved_motion.py
Normal file
126
frigate/motion/improved_motion.py
Normal file
@ -0,0 +1,126 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
from frigate.motion import MotionDetector
|
||||
|
||||
|
||||
class ImprovedMotionDetector(MotionDetector):
|
||||
def __init__(
|
||||
self,
|
||||
frame_shape,
|
||||
config: MotionConfig,
|
||||
fps: int,
|
||||
improve_contrast,
|
||||
threshold,
|
||||
contour_area,
|
||||
):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = frame_shape[0] / config.frame_height
|
||||
self.motion_frame_size = (
|
||||
config.frame_height,
|
||||
config.frame_height * frame_shape[1] // frame_shape[0],
|
||||
)
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(
|
||||
config.mask,
|
||||
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
self.mask = np.where(resized_mask == [0])
|
||||
self.save_images = False
|
||||
self.improve_contrast = improve_contrast
|
||||
self.threshold = threshold
|
||||
self.contour_area = contour_area
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
|
||||
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
|
||||
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(
|
||||
gray,
|
||||
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT)
|
||||
|
||||
# Improve contrast
|
||||
if self.improve_contrast.value:
|
||||
resized_frame = cv2.equalizeHist(resized_frame)
|
||||
|
||||
# mask frame
|
||||
resized_frame[self.mask] = [255]
|
||||
|
||||
if self.save_images:
|
||||
self.frame_counter += 1
|
||||
# compare to average
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
thresh = cv2.threshold(
|
||||
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
|
||||
)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
|
||||
cnts = cv2.findContours(
|
||||
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > self.contour_area.value:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append(
|
||||
(
|
||||
int(x * self.resize_factor),
|
||||
int(y * self.resize_factor),
|
||||
int((x + w) * self.resize_factor),
|
||||
int((y + h) * self.resize_factor),
|
||||
)
|
||||
)
|
||||
|
||||
if self.save_images:
|
||||
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
|
||||
for c in cnts:
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > self.contour_area.value:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
cv2.rectangle(
|
||||
thresh_dilated,
|
||||
(x, y),
|
||||
(x + w, y + h),
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated
|
||||
)
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for a bit
|
||||
cv2.accumulateWeighted(
|
||||
resized_frame, self.avg_frame, self.config.frame_alpha
|
||||
)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(
|
||||
resized_frame, self.avg_frame, self.config.frame_alpha
|
||||
)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
||||
Loading…
Reference in New Issue
Block a user