mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-07 03:35:26 +03:00
format rknn.py
This commit is contained in:
parent
e0d9e7dceb
commit
e3342cd2dd
@ -13,10 +13,16 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "rknn"
|
||||
|
||||
|
||||
class RknnDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
score_thresh: float = Field(default=0.5, ge=0, le= 1, title="Minimal confidence for detection.")
|
||||
nms_thresh: float = Field(default=0.45, ge=0, le= 1, title="IoU threshold for non-maximum suppression.")
|
||||
score_thresh: float = Field(
|
||||
default=0.5, ge=0, le=1, title="Minimal confidence for detection."
|
||||
)
|
||||
nms_thresh: float = Field(
|
||||
default=0.45, ge=0, le=1, title="IoU threshold for non-maximum suppression."
|
||||
)
|
||||
|
||||
|
||||
class Rknn(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
@ -30,11 +36,12 @@ class Rknn(DetectionApi):
|
||||
self.model_path = config.model.path or "/models/yolov8n-320x320.rknn"
|
||||
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
self.rknn = RKNNLite(verbose=False)
|
||||
if self.rknn.load_rknn(self.model_path) != 0:
|
||||
logger.error('Error initializing rknn model.')
|
||||
logger.error("Error initializing rknn model.")
|
||||
if self.rknn.init_runtime() != 0:
|
||||
logger.error('Error initializing rknn runtime.')
|
||||
logger.error("Error initializing rknn runtime.")
|
||||
|
||||
def __del__(self):
|
||||
self.rknn.release()
|
||||
@ -50,22 +57,30 @@ class Rknn(DetectionApi):
|
||||
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
|
||||
"""
|
||||
|
||||
results = np.transpose(results[0,:,:,0]) # array shape (2100, 84)
|
||||
classes = np.argmax(results[:, 4:], axis=1) # array shape (2100,); index of class with max confidence of each row
|
||||
scores = np.max(results[:, 4:], axis=1) # array shape (2100,); max confidence of each row
|
||||
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
|
||||
classes = np.argmax(
|
||||
results[:, 4:], axis=1
|
||||
) # array shape (2100,); index of class with max confidence of each row
|
||||
scores = np.max(
|
||||
results[:, 4:], axis=1
|
||||
) # array shape (2100,); max confidence of each row
|
||||
|
||||
# array shape (2100, 4); bounding box of each row
|
||||
boxes = np.transpose(
|
||||
np.vstack((
|
||||
results[:,0] - 0.5 * results[:,2],
|
||||
results[:,1] - 0.5 * results[:,3],
|
||||
results[:,2],
|
||||
results[:,3])
|
||||
np.vstack(
|
||||
(
|
||||
results[:, 0] - 0.5 * results[:, 2],
|
||||
results[:, 1] - 0.5 * results[:, 3],
|
||||
results[:, 2],
|
||||
results[:, 3],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# indices of rows with confidence > SCORE_THRESH with Non-maximum Suppression (NMS)
|
||||
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, self.score_thresh, self.nms_thresh, 0.5)
|
||||
result_boxes = cv2.dnn.NMSBoxes(
|
||||
boxes, scores, self.score_thresh, self.nms_thresh, 0.5
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
@ -80,7 +95,7 @@ class Rknn(DetectionApi):
|
||||
(boxes[index][1]) / self.height,
|
||||
(boxes[index][0]) / self.width,
|
||||
(boxes[index][1] + boxes[index][3]) / self.height,
|
||||
(boxes[index][0] + boxes[index][2]) / self.width
|
||||
(boxes[index][0] + boxes[index][2]) / self.width,
|
||||
]
|
||||
|
||||
return detections
|
||||
@ -90,5 +105,9 @@ class Rknn(DetectionApi):
|
||||
return self.rknn.inference(inputs=tensor_input)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
output = self.inference([tensor_input,])
|
||||
output = self.inference(
|
||||
[
|
||||
tensor_input,
|
||||
]
|
||||
)
|
||||
return self.postprocess(output[0])
|
||||
|
||||
Loading…
Reference in New Issue
Block a user