update rknn detector to v1.6.0

This commit is contained in:
MarcA711 2024-03-16 10:36:28 +00:00
parent 579a7c8900
commit d5d56709e7
3 changed files with 87 additions and 97 deletions

View File

@ -18,13 +18,12 @@ RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
WORKDIR /opt/frigate/
COPY --from=rootfs / /
ADD https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk356x.so /usr/lib/
ADD https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk3588.so /usr/lib/
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v1.6.0/librknnrt.so /usr/lib/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3562/yolov8n-320x320-rk3562.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3566/yolov8n-320x320-rk3566.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3568/yolov8n-320x320-rk3568.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3588/yolov8n-320x320-rk3588.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.6.0-yolov8-default/default-yolov8n-rk3562.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.6.0-yolov8-default/default-yolov8n-rk3566.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.6.0-yolov8-default/default-yolov8n-rk3568.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.6.0-yolov8-default/default-yolov8n-rk3588.rknn /models/rknn/
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe

View File

@ -1,2 +1 @@
hide-warnings == 0.17
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v1.5.2/rknn_toolkit_lite2-1.5.2-cp39-cp39-linux_aarch64.whl
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v1.6.0/rknn_toolkit_lite2-1.6.0-cp39-cp39-linux_aarch64.whl

View File

@ -1,18 +1,8 @@
import logging
import os.path
import urllib.request
from typing import Literal
import numpy as np
try:
from hide_warnings import hide_warnings
except: # noqa: E722
def hide_warnings(func):
pass
from typing import Literal
from pydantic import Field
from frigate.detectors.detection_api import DetectionApi
@ -24,14 +14,6 @@ DETECTOR_KEY = "rknn"
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"]
yolov8_suffix = {
"default-yolov8n": "n",
"default-yolov8s": "s",
"default-yolov8m": "m",
"default-yolov8l": "l",
"default-yolov8x": "x",
}
class RknnDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
@ -42,7 +24,35 @@ class Rknn(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, config: RknnDetectorConfig):
# find out SoC
self.height = config.model.height
self.width = config.model.width
soc = self.get_soc()
core_mask = config.core_mask
model_properties = self.get_model_properties(
config.model.path or "default-yolov8n", soc
)
if model_properties["supplied"] and not os.path.isfile(
model_properties["path"]
):
self.download_model(model_properties["filename"])
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(model_properties["path"]) != 0:
logger.error("Error initializing rknn model.")
if self.rknn.init_runtime(core_mask=core_mask) != 0:
logger.error(
"Error initializing rknn runtime. Do you run docker in privileged mode?"
)
def __del__(self):
self.rknn.release()
def get_soc(self):
try:
with open("/proc/device-tree/compatible") as file:
soc = file.read().split(",")[-1].strip("\x00")
@ -62,78 +72,64 @@ class Rknn(DetectionApi):
)
)
if not os.path.isfile("/usr/lib/librknnrt.so"):
if "rk356" in soc:
os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so")
elif "rk3588" in soc:
os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so")
return soc
self.model_path = config.model.path or "default-yolov8n"
self.core_mask = config.core_mask
self.height = config.model.height
self.width = config.model.width
def get_model_properties(self, path, soc):
model_properties = {
"supplied": False,
"path": path,
"suffix": None,
"quant": None,
"filename": None,
}
if self.model_path in yolov8_suffix:
if self.model_path == "default-yolov8n":
self.model_path = "/models/rknn/yolov8n-320x320-{soc}.rknn".format(
soc=soc
)
else:
model_suffix = yolov8_suffix[self.model_path]
self.model_path = (
"/config/model_cache/rknn/yolov8{suffix}-320x320-{soc}.rknn".format(
suffix=model_suffix, soc=soc
)
)
if path[:-1] in ["default-yolov8", "quant_i8"] and path[-1] in "nsmlx":
model_properties["supplied"] = True
model_properties["suffix"] = path[-1]
model_properties["quant"] = path[7:9] if path.startswith("quant") else None
os.makedirs("/config/model_cache/rknn", exist_ok=True)
if not os.path.isfile(self.model_path):
logger.info(
"Downloading yolov8{suffix} model.".format(suffix=model_suffix)
)
urllib.request.urlretrieve(
"https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-{soc}/yolov8{suffix}-320x320-{soc}.rknn".format(
soc=soc, suffix=model_suffix
),
self.model_path,
)
prefix = "/config/model_cache/rknn/"
if model_properties["suffix"] == "n" and model_properties["quant"] == None:
prefix = "/models/rknn/"
if (config.model.width != 320) or (config.model.height != 320):
logger.error(
"Make sure to set the model width and height to 320 in your config.yml."
)
raise Exception(
"Make sure to set the model width and height to 320 in your config.yml."
)
model_properties["filename"] = "{}-{}.rknn".format(path, soc)
model_properties["path"] = prefix + model_properties["filename"]
if config.model.input_pixel_format != "bgr":
logger.error(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
return model_properties
if config.model.input_tensor != "nhwc":
logger.error(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
def download_model(self, name):
os.makedirs("/config/model_cache/rknn", exist_ok=True)
logger.info("Downloading yolov8 model.")
urllib.request.urlretrieve(
"https://github.com/MarcA711/rknn-models/releases/download/v1.6.0-yolov8-default/"
+ name,
"/config/model_cache/rknn/" + name,
)
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(self.model_path) != 0:
logger.error("Error initializing rknn model.")
if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
def check_config(self, config):
if (config.model.width != 320) or (config.model.height != 320):
logger.error(
"Error initializing rknn runtime. Do you run docker in privileged mode?"
"Make sure to set the model width and height to 320 in your config.yml."
)
raise Exception(
"Make sure to set the model width and height to 320 in your config.yml."
)
def __del__(self):
self.rknn.release()
if config.model.input_pixel_format != "bgr":
logger.error(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
)
if config.model.input_tensor != "nhwc":
logger.error(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
raise Exception(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
)
def postprocess(self, results):
"""
@ -146,7 +142,7 @@ class Rknn(DetectionApi):
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
"""
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
results = np.transpose(results[0, 0, :, :]) # array shape (2100, 84)
scores = np.max(
results[:, 4:], axis=1
) # array shape (2100,); max confidence of each row
@ -187,14 +183,10 @@ class Rknn(DetectionApi):
return detections
@hide_warnings
def inference(self, tensor_input):
return self.rknn.inference(inputs=tensor_input)
def detect_raw(self, tensor_input):
output = self.inference(
output = self.rknn.inference(
[
tensor_input,
]
)
return self.postprocess(output[0])
return self.postprocess(np.array(output))