Fixed lint formatting issues

This commit is contained in:
Anil Ozyalcin 2023-02-01 19:20:06 -08:00
parent a3bd13b7ea
commit cf70808c77
2 changed files with 19 additions and 13 deletions

View File

@ -22,10 +22,12 @@ class InputTensorEnum(str, Enum):
nchw = "nchw"
nhwc = "nhwc"
class ModelTypeEnum(str, Enum):
ssd = "ssd"
yolox = "yolox"
class ModelConfig(BaseModel):
path: Optional[str] = Field(title="Custom Object detection model path.")
labelmap_path: Optional[str] = Field(title="Label map for custom object detector.")

View File

@ -17,6 +17,7 @@ class OvDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class OvDetector(DetectionApi):
type_key = DETECTOR_KEY
@ -43,9 +44,8 @@ class OvDetector(DetectionApi):
except:
logger.info(f"Model has {self.output_indexes} Output Tensors")
break
if(self.ov_model_type == ModelTypeEnum.yolox):
self.num_classes = tensor_shape[2]-5
if self.ov_model_type == ModelTypeEnum.yolox:
self.num_classes = tensor_shape[2] - 5
logger.info(f"YOLOX model has {self.num_classes} classes")
self.set_strides_grids()
@ -64,7 +64,6 @@ class OvDetector(DetectionApi):
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
self.grids = np.concatenate(grids, 1)
self.expanded_strides = np.concatenate(expanded_strides, 1)
@ -72,7 +71,7 @@ class OvDetector(DetectionApi):
infer_request = self.interpreter.create_infer_request()
infer_request.infer([tensor_input])
if(self.ov_model_type == ModelTypeEnum.ssd):
if self.ov_model_type == ModelTypeEnum.ssd:
results = infer_request.get_output_tensor()
detections = np.zeros((20, 6), np.float32)
@ -92,7 +91,7 @@ class OvDetector(DetectionApi):
]
i += 1
return detections
elif(self.ov_model_type == ModelTypeEnum.yolox):
elif self.ov_model_type == ModelTypeEnum.yolox:
out_tensor = infer_request.get_output_tensor()
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
results = out_tensor.data
@ -100,8 +99,10 @@ class OvDetector(DetectionApi):
results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
image_pred = results[0, ...]
class_conf = np.max(image_pred[:, 5:5+self.num_classes], axis=1, keepdims=True)
class_pred = np.argmax(image_pred[: , 5:5+self.num_classes], axis=1)
class_conf = np.max(
image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
)
class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
class_pred = np.expand_dims(class_pred, axis=1)
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
@ -119,13 +120,16 @@ class OvDetector(DetectionApi):
detections[i] = [
object_detected[6], # Label ID
object_detected[5], # Confidence
(object_detected[1]-(object_detected[3]/2))/self.h, # y_min
(object_detected[0]-(object_detected[2]/2))/self.w, # x_min
(object_detected[1]+(object_detected[3]/2))/self.h, # y_max
(object_detected[0]+(object_detected[2]/2))/self.w, # x_max
(object_detected[1] - (object_detected[3] / 2))
/ self.h, # y_min
(object_detected[0] - (object_detected[2] / 2))
/ self.w, # x_min
(object_detected[1] + (object_detected[3] / 2))
/ self.h, # y_max
(object_detected[0] + (object_detected[2] / 2))
/ self.w, # x_max
]
i += 1
else:
break
return detections