Move CPU detector to bottom

This commit is contained in:
Nicolas Mowen 2024-09-26 15:20:57 -06:00 committed by GitHub
parent 0982a40046
commit cc03771c8b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -34,34 +34,6 @@ Frigate supports multiple different detectors that work on different types of ha
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, `rknn`, and `hailo8l`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
## CPU Detector (not recommended)
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
:::tip
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
:::
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
```yaml
detectors:
cpu1:
type: cpu
num_threads: 3
model:
path: "/custom_model.tflite"
cpu2:
type: cpu
num_threads: 3
```
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
## Edge TPU Detector
The Edge TPU detector type runs a TensorFlow Lite model utilizing the Google Coral delegate for hardware acceleration. To configure an Edge TPU detector, set the `"type"` attribute to `"edgetpu"`.
@ -488,6 +460,34 @@ model:
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
## CPU Detector (not recommended)
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
:::tip
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
:::
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
```yaml
detectors:
cpu1:
type: cpu
num_threads: 3
model:
path: "/custom_model.tflite"
cpu2:
type: cpu
num_threads: 3
```
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
## Deepstack / CodeProject.AI Server Detector
The Deepstack / CodeProject.AI Server detector for Frigate allows you to integrate Deepstack and CodeProject.AI object detection capabilities into Frigate. CodeProject.AI and DeepStack are open-source AI platforms that can be run on various devices such as the Raspberry Pi, Nvidia Jetson, and other compatible hardware. It is important to note that the integration is performed over the network, so the inference times may not be as fast as native Frigate detectors, but it still provides an efficient and reliable solution for object detection and tracking.