Miscellaneous Fixes (#20866)

* Don't warn when event ids have expired for trigger sync

* Import faster_whisper conditinally to avoid illegal instruction

* Catch OpenVINO runtime error

* fix race condition in detail stream context

navigating between tracked objects in Explore would sometimes prevent the object track from appearing

* Handle case where classification images are deleted

* Adjust default rounded corners on larger screens

* Improve flow handling for classification state

* Remove images when wizard is cancelled

* Improve deletion handling for classes

* Set constraints on review buffers

* Update to support correct data format

* Set minimum duration for recording based review items

* Use friendly name in review genai prompt

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
Josh Hawkins 2025-11-10 11:03:56 -06:00 committed by GitHub
parent 99a363c047
commit c371fc0c87
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 287 additions and 113 deletions

View File

@ -595,9 +595,13 @@ def get_classification_dataset(name: str):
"last_training_image_count": 0,
"current_image_count": current_image_count,
"new_images_count": current_image_count,
"dataset_changed": current_image_count > 0,
}
else:
last_training_count = metadata.get("last_training_image_count", 0)
# Dataset has changed if count is different (either added or deleted images)
dataset_changed = current_image_count != last_training_count
# Only show positive count for new images (ignore deletions in the count display)
new_images_count = max(0, current_image_count - last_training_count)
training_metadata = {
"has_trained": True,
@ -605,6 +609,7 @@ def get_classification_dataset(name: str):
"last_training_image_count": last_training_count,
"current_image_count": current_image_count,
"new_images_count": new_images_count,
"dataset_changed": dataset_changed,
}
return JSONResponse(
@ -948,31 +953,29 @@ async def generate_object_examples(request: Request, body: GenerateObjectExample
dependencies=[Depends(require_role(["admin"]))],
summary="Delete a classification model",
description="""Deletes a specific classification model and all its associated data.
The name must exist in the classification models. Returns a success message or an error if the name is invalid.""",
Works even if the model is not in the config (e.g., partially created during wizard).
Returns a success message.""",
)
def delete_classification_model(request: Request, name: str):
config: FrigateConfig = request.app.frigate_config
if name not in config.classification.custom:
return JSONResponse(
content=(
{
"success": False,
"message": f"{name} is not a known classification model.",
}
),
status_code=404,
)
sanitized_name = sanitize_filename(name)
# Delete the classification model's data directory in clips
data_dir = os.path.join(CLIPS_DIR, sanitize_filename(name))
data_dir = os.path.join(CLIPS_DIR, sanitized_name)
if os.path.exists(data_dir):
try:
shutil.rmtree(data_dir)
logger.info(f"Deleted classification data directory for {name}")
except Exception as e:
logger.debug(f"Failed to delete data directory for {name}: {e}")
# Delete the classification model's files in model_cache
model_dir = os.path.join(MODEL_CACHE_DIR, sanitize_filename(name))
model_dir = os.path.join(MODEL_CACHE_DIR, sanitized_name)
if os.path.exists(model_dir):
try:
shutil.rmtree(model_dir)
logger.info(f"Deleted classification model directory for {name}")
except Exception as e:
logger.debug(f"Failed to delete model directory for {name}: {e}")
return JSONResponse(
content=(

View File

@ -177,6 +177,12 @@ class CameraConfig(FrigateBaseModel):
def ffmpeg_cmds(self) -> list[dict[str, list[str]]]:
return self._ffmpeg_cmds
def get_formatted_name(self) -> str:
"""Return the friendly name if set, otherwise return a formatted version of the camera name."""
if self.friendly_name:
return self.friendly_name
return self.name.replace("_", " ").title() if self.name else ""
def create_ffmpeg_cmds(self):
if "_ffmpeg_cmds" in self:
return

View File

@ -56,6 +56,12 @@ class ZoneConfig(BaseModel):
def contour(self) -> np.ndarray:
return self._contour
def get_formatted_name(self, zone_name: str) -> str:
"""Return the friendly name if set, otherwise return a formatted version of the zone name."""
if self.friendly_name:
return self.friendly_name
return zone_name.replace("_", " ").title()
@field_validator("objects", mode="before")
@classmethod
def validate_objects(cls, v):

View File

@ -4,7 +4,6 @@ import logging
import os
import sherpa_onnx
from faster_whisper.utils import download_model
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import MODEL_CACHE_DIR
@ -25,6 +24,9 @@ class AudioTranscriptionModelRunner:
if model_size == "large":
# use the Whisper download function instead of our own
# Import dynamically to avoid crashes on systems without AVX support
from faster_whisper.utils import download_model
logger.debug("Downloading Whisper audio transcription model")
download_model(
size_or_id="small" if device == "cuda" else "tiny",

View File

@ -6,7 +6,6 @@ import threading
import time
from typing import Optional
from faster_whisper import WhisperModel
from peewee import DoesNotExist
from frigate.comms.inter_process import InterProcessRequestor
@ -51,6 +50,9 @@ class AudioTranscriptionPostProcessor(PostProcessorApi):
def __build_recognizer(self) -> None:
try:
# Import dynamically to avoid crashes on systems without AVX support
from faster_whisper import WhisperModel
self.recognizer = WhisperModel(
model_size_or_path="small",
device="cuda"

View File

@ -16,6 +16,7 @@ from peewee import DoesNotExist
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import FrigateConfig
from frigate.config.camera import CameraConfig
from frigate.config.camera.review import GenAIReviewConfig, ImageSourceEnum
from frigate.const import CACHE_DIR, CLIPS_DIR, UPDATE_REVIEW_DESCRIPTION
from frigate.data_processing.types import PostProcessDataEnum
@ -30,6 +31,7 @@ from ..types import DataProcessorMetrics
logger = logging.getLogger(__name__)
RECORDING_BUFFER_EXTENSION_PERCENT = 0.10
MIN_RECORDING_DURATION = 10
class ReviewDescriptionProcessor(PostProcessorApi):
@ -130,7 +132,17 @@ class ReviewDescriptionProcessor(PostProcessorApi):
if image_source == ImageSourceEnum.recordings:
duration = final_data["end_time"] - final_data["start_time"]
buffer_extension = duration * RECORDING_BUFFER_EXTENSION_PERCENT
buffer_extension = min(
10, max(2, duration * RECORDING_BUFFER_EXTENSION_PERCENT)
)
# Ensure minimum total duration for short review items
# This provides better context for brief events
total_duration = duration + (2 * buffer_extension)
if total_duration < MIN_RECORDING_DURATION:
# Expand buffer to reach minimum duration, still respecting max of 10s per side
additional_buffer_per_side = (MIN_RECORDING_DURATION - duration) / 2
buffer_extension = min(10, additional_buffer_per_side)
thumbs = self.get_recording_frames(
camera,
@ -182,7 +194,7 @@ class ReviewDescriptionProcessor(PostProcessorApi):
self.requestor,
self.genai_client,
self.review_desc_speed,
camera,
camera_config,
final_data,
thumbs,
camera_config.review.genai,
@ -411,7 +423,7 @@ def run_analysis(
requestor: InterProcessRequestor,
genai_client: GenAIClient,
review_inference_speed: InferenceSpeed,
camera: str,
camera_config: CameraConfig,
final_data: dict[str, str],
thumbs: list[bytes],
genai_config: GenAIReviewConfig,
@ -419,10 +431,19 @@ def run_analysis(
attribute_labels: list[str],
) -> None:
start = datetime.datetime.now().timestamp()
# Format zone names using zone config friendly names if available
formatted_zones = []
for zone_name in final_data["data"]["zones"]:
if zone_name in camera_config.zones:
formatted_zones.append(
camera_config.zones[zone_name].get_formatted_name(zone_name)
)
analytics_data = {
"id": final_data["id"],
"camera": camera,
"zones": final_data["data"]["zones"],
"camera": camera_config.get_formatted_name(),
"zones": formatted_zones,
"start": datetime.datetime.fromtimestamp(final_data["start_time"]).strftime(
"%A, %I:%M %p"
),

View File

@ -394,7 +394,11 @@ class OpenVINOModelRunner(BaseModelRunner):
self.infer_request.set_input_tensor(input_index, input_tensor)
# Run inference
try:
self.infer_request.infer()
except Exception as e:
logger.error(f"Error during OpenVINO inference: {e}")
return []
# Get all output tensors
outputs = []

View File

@ -472,7 +472,7 @@ class Embeddings:
)
thumbnail_missing = True
except DoesNotExist:
logger.warning(
logger.debug(
f"Event ID {trigger.data} for trigger {trigger_name} does not exist."
)
continue

View File

@ -51,8 +51,7 @@ class GenAIClient:
def get_concern_prompt() -> str:
if concerns:
concern_list = "\n - ".join(concerns)
return f"""
- `other_concerns` (list of strings): Include a list of any of the following concerns that are occurring:
return f"""- `other_concerns` (list of strings): Include a list of any of the following concerns that are occurring:
- {concern_list}"""
else:
return ""
@ -70,7 +69,7 @@ class GenAIClient:
return "\n- (No objects detected)"
context_prompt = f"""
Your task is to analyze the sequence of images ({len(thumbnails)} total) taken in chronological order from the perspective of the {review_data["camera"].replace("_", " ")} security camera.
Your task is to analyze the sequence of images ({len(thumbnails)} total) taken in chronological order from the perspective of the {review_data["camera"]} security camera.
## Normal Activity Patterns for This Property
@ -110,7 +109,7 @@ Your response MUST be a flat JSON object with:
- Frame 1 = earliest, Frame {len(thumbnails)} = latest
- Activity started at {review_data["start"]} and lasted {review_data["duration"]} seconds
- Zones involved: {", ".join(z.replace("_", " ").title() for z in review_data["zones"]) or "None"}
- Zones involved: {", ".join(review_data["zones"]) if review_data["zones"] else "None"}
## Objects in Scene

View File

@ -16,6 +16,7 @@
"tooltip": {
"trainingInProgress": "Model is currently training",
"noNewImages": "No new images to train. Classify more images in the dataset first.",
"noChanges": "No changes to the dataset since last training.",
"modelNotReady": "Model is not ready for training"
},
"toast": {
@ -43,7 +44,9 @@
},
"deleteCategory": {
"title": "Delete Class",
"desc": "Are you sure you want to delete the class {{name}}? This will permanently delete all associated images and require re-training the model."
"desc": "Are you sure you want to delete the class {{name}}? This will permanently delete all associated images and require re-training the model.",
"minClassesTitle": "Cannot Delete Class",
"minClassesDesc": "A classification model must have at least 2 classes. Add another class before deleting this one."
},
"deleteModel": {
"title": "Delete Classification Model",

View File

@ -28,6 +28,7 @@ import {
CustomClassificationModelConfig,
FrigateConfig,
} from "@/types/frigateConfig";
import { ClassificationDatasetResponse } from "@/types/classification";
import { getTranslatedLabel } from "@/utils/i18n";
import { zodResolver } from "@hookform/resolvers/zod";
import axios from "axios";
@ -140,16 +141,19 @@ export default function ClassificationModelEditDialog({
});
// Fetch dataset to get current classes for state models
const { data: dataset } = useSWR<{
[id: string]: string[];
}>(isStateModel ? `classification/${model.name}/dataset` : null, {
const { data: dataset } = useSWR<ClassificationDatasetResponse>(
isStateModel ? `classification/${model.name}/dataset` : null,
{
revalidateOnFocus: false,
});
},
);
// Update form with classes from dataset when loaded
useEffect(() => {
if (isStateModel && dataset) {
const classes = Object.keys(dataset).filter((key) => key !== "none");
if (isStateModel && dataset?.categories) {
const classes = Object.keys(dataset.categories).filter(
(key) => key !== "none",
);
if (classes.length > 0) {
(form as ReturnType<typeof useForm<StateFormData>>).setValue(
"classes",

View File

@ -15,6 +15,7 @@ import Step3ChooseExamples, {
} from "./wizard/Step3ChooseExamples";
import { cn } from "@/lib/utils";
import { isDesktop } from "react-device-detect";
import axios from "axios";
const OBJECT_STEPS = [
"wizard.steps.nameAndDefine",
@ -120,7 +121,18 @@ export default function ClassificationModelWizardDialog({
dispatch({ type: "PREVIOUS_STEP" });
};
const handleCancel = () => {
const handleCancel = async () => {
// Clean up any generated training images if we're cancelling from Step 3
if (wizardState.step1Data && wizardState.step3Data?.examplesGenerated) {
try {
await axios.delete(
`/classification/${wizardState.step1Data.modelName}`,
);
} catch (error) {
// Silently fail - user is already cancelling
}
}
dispatch({ type: "RESET" });
onClose();
};

View File

@ -165,18 +165,15 @@ export default function Step3ChooseExamples({
const isLastClass = currentClassIndex === allClasses.length - 1;
if (isLastClass) {
// Assign remaining unclassified images
// For object models, assign remaining unclassified images to "none"
// For state models, this should never happen since we require all images to be classified
if (step1Data.modelType !== "state") {
unknownImages.slice(0, 24).forEach((imageName) => {
if (!newClassifications[imageName]) {
// For state models with 2 classes, assign to the last class
// For object models, assign to "none"
if (step1Data.modelType === "state" && allClasses.length === 2) {
newClassifications[imageName] = allClasses[allClasses.length - 1];
} else {
newClassifications[imageName] = "none";
}
}
});
}
// All done, trigger training immediately
setImageClassifications(newClassifications);
@ -316,8 +313,15 @@ export default function Step3ChooseExamples({
return images;
}
return images.filter((img) => !imageClassifications[img]);
}, [unknownImages, imageClassifications]);
// If we're viewing a previous class (going back), show images for that class
// Otherwise show only unclassified images
const currentClassInView = allClasses[currentClassIndex];
return images.filter((img) => {
const imgClass = imageClassifications[img];
// Show if: unclassified OR classified with current class we're viewing
return !imgClass || imgClass === currentClassInView;
});
}, [unknownImages, imageClassifications, allClasses, currentClassIndex]);
const allImagesClassified = useMemo(() => {
return unclassifiedImages.length === 0;
@ -326,15 +330,26 @@ export default function Step3ChooseExamples({
// For state models on the last class, require all images to be classified
const isLastClass = currentClassIndex === allClasses.length - 1;
const canProceed = useMemo(() => {
if (
step1Data.modelType === "state" &&
isLastClass &&
!allImagesClassified
) {
return false;
if (step1Data.modelType === "state" && isLastClass) {
// Check if all 24 images will be classified after current selections are applied
const totalImages = unknownImages.slice(0, 24).length;
// Count images that will be classified (either already classified or currently selected)
const allImages = unknownImages.slice(0, 24);
const willBeClassified = allImages.filter((img) => {
return imageClassifications[img] || selectedImages.has(img);
}).length;
return willBeClassified >= totalImages;
}
return true;
}, [step1Data.modelType, isLastClass, allImagesClassified]);
}, [
step1Data.modelType,
isLastClass,
unknownImages,
imageClassifications,
selectedImages,
]);
const handleBack = useCallback(() => {
if (currentClassIndex > 0) {

View File

@ -12,13 +12,13 @@ export function ImageShadowOverlay({
<>
<div
className={cn(
"pointer-events-none absolute inset-x-0 top-0 z-10 h-[30%] w-full rounded-lg bg-gradient-to-b from-black/20 to-transparent md:rounded-2xl",
"pointer-events-none absolute inset-x-0 top-0 z-10 h-[30%] w-full rounded-lg bg-gradient-to-b from-black/20 to-transparent",
upperClassName,
)}
/>
<div
className={cn(
"pointer-events-none absolute inset-x-0 bottom-0 z-10 h-[10%] w-full rounded-lg bg-gradient-to-t from-black/20 to-transparent md:rounded-2xl",
"pointer-events-none absolute inset-x-0 bottom-0 z-10 h-[10%] w-full rounded-lg bg-gradient-to-t from-black/20 to-transparent",
lowerClassName,
)}
/>

View File

@ -77,7 +77,10 @@ export default function BirdseyeLivePlayer({
)}
onClick={onClick}
>
<ImageShadowOverlay />
<ImageShadowOverlay
upperClassName="md:rounded-2xl"
lowerClassName="md:rounded-2xl"
/>
<div className="size-full" ref={playerRef}>
{player}
</div>

View File

@ -331,7 +331,10 @@ export default function LivePlayer({
>
{cameraEnabled &&
((showStillWithoutActivity && !liveReady) || liveReady) && (
<ImageShadowOverlay />
<ImageShadowOverlay
upperClassName="md:rounded-2xl"
lowerClassName="md:rounded-2xl"
/>
)}
{player}
{cameraEnabled &&

View File

@ -1,4 +1,10 @@
import React, { createContext, useContext, useState, useEffect } from "react";
import React, {
createContext,
useContext,
useState,
useEffect,
useRef,
} from "react";
import { FrigateConfig } from "@/types/frigateConfig";
import useSWR from "swr";
@ -36,6 +42,23 @@ export function DetailStreamProvider({
() => initialSelectedObjectIds ?? [],
);
// When the parent provides a new initialSelectedObjectIds (for example
// when navigating between search results) update the selection so children
// like `ObjectTrackOverlay` receive the new ids immediately. We only
// perform this update when the incoming value actually changes.
useEffect(() => {
if (
initialSelectedObjectIds &&
(initialSelectedObjectIds.length !== selectedObjectIds.length ||
initialSelectedObjectIds.some((v, i) => selectedObjectIds[i] !== v))
) {
setSelectedObjectIds(initialSelectedObjectIds);
}
// Intentionally include selectedObjectIds to compare previous value and
// avoid overwriting user interactions unless the incoming prop changed.
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [initialSelectedObjectIds]);
const toggleObjectSelection = (id: string | undefined) => {
if (id === undefined) {
setSelectedObjectIds([]);
@ -63,10 +86,33 @@ export function DetailStreamProvider({
setAnnotationOffset(cfgOffset);
}, [config, camera]);
// Clear selected objects when exiting detail mode or changing cameras
// Clear selected objects when exiting detail mode or when the camera
// changes for providers that are not initialized with an explicit
// `initialSelectedObjectIds` (e.g., the RecordingView). For providers
// that receive `initialSelectedObjectIds` (like SearchDetailDialog) we
// avoid clearing on camera change to prevent a race with children that
// immediately set selection when mounting.
const prevCameraRef = useRef<string | undefined>(undefined);
useEffect(() => {
// Always clear when leaving detail mode
if (!isDetailMode) {
setSelectedObjectIds([]);
}, [isDetailMode, camera]);
prevCameraRef.current = camera;
return;
}
// If camera changed and the parent did not provide initialSelectedObjectIds,
// clear selection to preserve previous behavior.
if (
prevCameraRef.current !== undefined &&
prevCameraRef.current !== camera &&
initialSelectedObjectIds === undefined
) {
setSelectedObjectIds([]);
}
prevCameraRef.current = camera;
}, [isDetailMode, camera, initialSelectedObjectIds]);
const value: DetailStreamContextType = {
selectedObjectIds,

View File

@ -20,3 +20,17 @@ export type ClassificationThreshold = {
recognition: number;
unknown: number;
};
export type ClassificationDatasetResponse = {
categories: {
[id: string]: string[];
};
training_metadata: {
has_trained: boolean;
last_training_date: string | null;
last_training_image_count: number;
current_image_count: number;
new_images_count: number;
dataset_changed: boolean;
} | null;
};

View File

@ -11,6 +11,7 @@ import {
CustomClassificationModelConfig,
FrigateConfig,
} from "@/types/frigateConfig";
import { ClassificationDatasetResponse } from "@/types/classification";
import { useCallback, useEffect, useMemo, useState } from "react";
import { useTranslation } from "react-i18next";
import { FaFolderPlus } from "react-icons/fa";
@ -209,9 +210,10 @@ type ModelCardProps = {
function ModelCard({ config, onClick, onUpdate, onDelete }: ModelCardProps) {
const { t } = useTranslation(["views/classificationModel"]);
const { data: dataset } = useSWR<{
[id: string]: string[];
}>(`classification/${config.name}/dataset`, { revalidateOnFocus: false });
const { data: dataset } = useSWR<ClassificationDatasetResponse>(
`classification/${config.name}/dataset`,
{ revalidateOnFocus: false },
);
const [deleteDialogOpen, setDeleteDialogOpen] = useState(false);
const [editDialogOpen, setEditDialogOpen] = useState(false);
@ -260,20 +262,25 @@ function ModelCard({ config, onClick, onUpdate, onDelete }: ModelCardProps) {
}, []);
const coverImage = useMemo(() => {
if (!dataset) {
if (!dataset || !dataset.categories) {
return undefined;
}
const keys = Object.keys(dataset).filter((key) => key != "none");
const selectedKey = keys[0];
const keys = Object.keys(dataset.categories).filter((key) => key != "none");
if (keys.length === 0) {
return undefined;
}
if (!dataset[selectedKey]) {
const selectedKey = keys[0];
const images = dataset.categories[selectedKey];
if (!images || images.length === 0) {
return undefined;
}
return {
name: selectedKey,
img: dataset[selectedKey][0],
img: images[0],
};
}, [dataset]);
@ -317,11 +324,19 @@ function ModelCard({ config, onClick, onUpdate, onDelete }: ModelCardProps) {
)}
onClick={onClick}
>
{coverImage ? (
<>
<img
className="size-full"
src={`${baseUrl}clips/${config.name}/dataset/${coverImage?.name}/${coverImage?.img}`}
src={`${baseUrl}clips/${config.name}/dataset/${coverImage.name}/${coverImage.img}`}
/>
<ImageShadowOverlay lowerClassName="h-[30%] z-0" />
</>
) : (
<div className="flex size-full items-center justify-center bg-background_alt">
<MdModelTraining className="size-16 text-muted-foreground" />
</div>
)}
<div className="absolute bottom-2 left-3 text-lg text-white smart-capitalize">
{config.name}
</div>

View File

@ -59,7 +59,11 @@ import { useNavigate } from "react-router-dom";
import { IoMdArrowRoundBack } from "react-icons/io";
import TrainFilterDialog from "@/components/overlay/dialog/TrainFilterDialog";
import useApiFilter from "@/hooks/use-api-filter";
import { ClassificationItemData, TrainFilter } from "@/types/classification";
import {
ClassificationDatasetResponse,
ClassificationItemData,
TrainFilter,
} from "@/types/classification";
import {
ClassificationCard,
GroupedClassificationCard,
@ -118,16 +122,10 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
const { data: trainImages, mutate: refreshTrain } = useSWR<string[]>(
`classification/${model.name}/train`,
);
const { data: datasetResponse, mutate: refreshDataset } = useSWR<{
categories: { [id: string]: string[] };
training_metadata: {
has_trained: boolean;
last_training_date: string | null;
last_training_image_count: number;
current_image_count: number;
new_images_count: number;
} | null;
}>(`classification/${model.name}/dataset`);
const { data: datasetResponse, mutate: refreshDataset } =
useSWR<ClassificationDatasetResponse>(
`classification/${model.name}/dataset`,
);
const dataset = datasetResponse?.categories || {};
const trainingMetadata = datasetResponse?.training_metadata;
@ -264,10 +262,11 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
);
}
// Always refresh dataset to update the categories list
refreshDataset();
if (pageToggle == "train") {
refreshTrain();
} else {
refreshDataset();
}
}
})
@ -445,7 +444,7 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
variant={modelState == "failed" ? "destructive" : "select"}
disabled={
(modelState != "complete" && modelState != "failed") ||
(trainingMetadata?.new_images_count ?? 0) === 0
!trainingMetadata?.dataset_changed
}
>
{modelState == "training" ? (
@ -466,14 +465,14 @@ export default function ModelTrainingView({ model }: ModelTrainingViewProps) {
)}
</Button>
</TooltipTrigger>
{((trainingMetadata?.new_images_count ?? 0) === 0 ||
{(!trainingMetadata?.dataset_changed ||
(modelState != "complete" && modelState != "failed")) && (
<TooltipPortal>
<TooltipContent>
{modelState == "training"
? t("tooltip.trainingInProgress")
: trainingMetadata?.new_images_count === 0
? t("tooltip.noNewImages")
: !trainingMetadata?.dataset_changed
? t("tooltip.noChanges")
: t("tooltip.modelNotReady")}
</TooltipContent>
</TooltipPortal>
@ -571,13 +570,28 @@ function LibrarySelector({
>
<DialogContent>
<DialogHeader>
<DialogTitle>{t("deleteCategory.title")}</DialogTitle>
<DialogTitle>
{Object.keys(dataset).length <= 2
? t("deleteCategory.minClassesTitle")
: t("deleteCategory.title")}
</DialogTitle>
<DialogDescription>
{t("deleteCategory.desc", { name: confirmDelete })}
{Object.keys(dataset).length <= 2
? t("deleteCategory.minClassesDesc")
: t("deleteCategory.desc", { name: confirmDelete })}
</DialogDescription>
</DialogHeader>
<div className="flex justify-end gap-2">
{Object.keys(dataset).length <= 2 ? (
<Button variant="outline" onClick={() => setConfirmDelete(null)}>
{t("button.ok", { ns: "common" })}
</Button>
) : (
<>
<Button
variant="outline"
onClick={() => setConfirmDelete(null)}
>
{t("button.cancel", { ns: "common" })}
</Button>
<Button
@ -592,6 +606,8 @@ function LibrarySelector({
>
{t("button.delete", { ns: "common" })}
</Button>
</>
)}
</div>
</DialogContent>
</Dialog>