Merge branch '0.16' into dev

This commit is contained in:
Nicolas Mowen 2025-01-03 10:58:22 -06:00 committed by GitHub
commit c02395dfef
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
64 changed files with 2759 additions and 206 deletions

View File

@ -2,6 +2,7 @@ aarch
absdiff absdiff
airockchip airockchip
Alloc Alloc
alpr
Amcrest Amcrest
amdgpu amdgpu
analyzeduration analyzeduration
@ -61,6 +62,7 @@ dsize
dtype dtype
ECONNRESET ECONNRESET
edgetpu edgetpu
facenet
fastapi fastapi
faststart faststart
fflags fflags
@ -114,6 +116,8 @@ itemsize
Jellyfin Jellyfin
jetson jetson
jetsons jetsons
jina
jinaai
joserfc joserfc
jsmpeg jsmpeg
jsonify jsonify
@ -187,6 +191,7 @@ openai
opencv opencv
openvino openvino
OWASP OWASP
paddleocr
paho paho
passwordless passwordless
popleft popleft
@ -308,4 +313,4 @@ yolo
yolonas yolonas
yolox yolox
zeep zeep
zerolatency zerolatency

View File

@ -1,7 +1,7 @@
default_target: local default_target: local
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1) COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
VERSION = 0.15.0 VERSION = 0.16.0
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD) GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
BOARDS= #Initialized empty BOARDS= #Initialized empty

View File

@ -5,6 +5,7 @@ ARG DEBIAN_FRONTEND=noninteractive
# Build Python wheels # Build Python wheels
FROM wheels AS h8l-wheels FROM wheels AS h8l-wheels
RUN python3 -m pip config set global.break-system-packages true
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt
@ -30,6 +31,7 @@ COPY --from=hailort /hailo-wheels /deps/hailo-wheels
COPY --from=hailort /rootfs/ / COPY --from=hailort /rootfs/ /
# Install the wheels # Install the wheels
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 install -U /deps/h8l-wheels/*.whl RUN pip3 install -U /deps/h8l-wheels/*.whl
RUN pip3 install -U /deps/hailo-wheels/*.whl RUN pip3 install -U /deps/hailo-wheels/*.whl

View File

@ -15,5 +15,5 @@ wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_ver
mkdir -p /hailo-wheels mkdir -p /hailo-wheels
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp39-cp39-linux_${arch}.whl" wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp311-cp311-linux_${arch}.whl"

View File

@ -3,12 +3,12 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable # https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
ARG BASE_IMAGE=debian:11 ARG BASE_IMAGE=debian:12
ARG SLIM_BASE=debian:11-slim ARG SLIM_BASE=debian:12-slim
FROM ${BASE_IMAGE} AS base FROM ${BASE_IMAGE} AS base
FROM --platform=${BUILDPLATFORM} debian:11 AS base_host FROM --platform=${BUILDPLATFORM} debian:12 AS base_host
FROM ${SLIM_BASE} AS slim-base FROM ${SLIM_BASE} AS slim-base
@ -66,8 +66,8 @@ COPY docker/main/requirements-ov.txt /requirements-ov.txt
RUN apt-get -qq update \ RUN apt-get -qq update \
&& apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \ && apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \
&& wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \ && wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip" \ && python3 get-pip.py "pip" --break-system-packages \
&& pip install -r /requirements-ov.txt && pip install --break-system-packages -r /requirements-ov.txt
# Get OpenVino Model # Get OpenVino Model
RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \ RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \
@ -139,24 +139,17 @@ ARG TARGETARCH
# Use a separate container to build wheels to prevent build dependencies in final image # Use a separate container to build wheels to prevent build dependencies in final image
RUN apt-get -qq update \ RUN apt-get -qq update \
&& apt-get -qq install -y \ && apt-get -qq install -y \
apt-transport-https \ apt-transport-https wget \
gnupg \
wget \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
&& apt-get -qq update \ && apt-get -qq update \
&& apt-get -qq install -y \ && apt-get -qq install -y \
python3.9 \ python3 \
python3.9-dev \ python3-dev \
# opencv dependencies # opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \ build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \ libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \ libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\ gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \ libtbbmalloc2 libtbb-dev libdc1394-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \ libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# sqlite3 dependencies # sqlite3 dependencies
tclsh \ tclsh \
@ -164,14 +157,11 @@ RUN apt-get -qq update \
gcc gfortran libopenblas-dev liblapack-dev && \ gcc gfortran libopenblas-dev liblapack-dev && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Ensure python3 defaults to python3.9
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \ RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip" && python3 get-pip.py "pip" --break-system-packages
COPY docker/main/requirements.txt /requirements.txt COPY docker/main/requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt RUN pip3 install -r /requirements.txt --break-system-packages
# Build pysqlite3 from source # Build pysqlite3 from source
COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
@ -222,8 +212,8 @@ RUN --mount=type=bind,source=docker/main/install_deps.sh,target=/deps/install_de
/deps/install_deps.sh /deps/install_deps.sh
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \ RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
python3 -m pip install --upgrade pip && \ python3 -m pip install --upgrade pip --break-system-packages && \
pip3 install -U /deps/wheels/*.whl pip3 install -U /deps/wheels/*.whl --break-system-packages
COPY --from=deps-rootfs / / COPY --from=deps-rootfs / /
@ -270,7 +260,7 @@ RUN apt-get update \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \ RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \
pip3 install -r requirements-dev.txt pip3 install -r requirements-dev.txt --break-system-packages
HEALTHCHECK NONE HEALTHCHECK NONE

View File

@ -8,8 +8,7 @@ SECURE_TOKEN_MODULE_VERSION="1.5"
SET_MISC_MODULE_VERSION="v0.33" SET_MISC_MODULE_VERSION="v0.33"
NGX_DEVEL_KIT_VERSION="v0.3.3" NGX_DEVEL_KIT_VERSION="v0.3.3"
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
apt-get update apt-get update
apt-get -yqq build-dep nginx apt-get -yqq build-dep nginx

View File

@ -4,7 +4,7 @@ from openvino.tools import mo
ov_model = mo.convert_model( ov_model = mo.convert_model(
"/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb", "/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb",
compress_to_fp16=True, compress_to_fp16=True,
transformations_config="/usr/local/lib/python3.9/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json", transformations_config="/usr/local/lib/python3.11/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config", tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config",
reverse_input_channels=True, reverse_input_channels=True,
) )

View File

@ -4,8 +4,7 @@ set -euxo pipefail
SQLITE_VEC_VERSION="0.1.3" SQLITE_VEC_VERSION="0.1.3"
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
apt-get update apt-get update
apt-get -yqq build-dep sqlite3 gettext git apt-get -yqq build-dep sqlite3 gettext git

View File

@ -11,33 +11,34 @@ apt-get -qq install --no-install-recommends -y \
lbzip2 \ lbzip2 \
procps vainfo \ procps vainfo \
unzip locales tzdata libxml2 xz-utils \ unzip locales tzdata libxml2 xz-utils \
python3.9 \ python3 \
python3-pip \ python3-pip \
curl \ curl \
lsof \ lsof \
jq \ jq \
nethogs nethogs \
libgl1 \
# ensure python3 defaults to python3.9 libglib2.0-0 \
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 libusb-1.0.0
mkdir -p -m 600 /root/.gnupg mkdir -p -m 600 /root/.gnupg
# add coral repo # install coral runtime
curl -fsSLo - https://packages.cloud.google.com/apt/doc/apt-key.gpg | \ wget -q -O /tmp/libedgetpu1-max.deb "https://github.com/feranick/libedgetpu/releases/download/16.0TF2.17.0-1/libedgetpu1-max_16.0tf2.17.0-1.bookworm_${TARGETARCH}.deb"
gpg --dearmor -o /etc/apt/trusted.gpg.d/google-cloud-packages-archive-keyring.gpg unset DEBIAN_FRONTEND
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | tee /etc/apt/sources.list.d/coral-edgetpu.list yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive
echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections rm /tmp/libedgetpu1-max.deb
# enable non-free repo in Debian # install python3 & tflite runtime
if grep -q "Debian" /etc/issue; then if [[ "${TARGETARCH}" == "amd64" ]]; then
sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_x86_64.whl
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_x86_64.whl
fi fi
# coral drivers if [[ "${TARGETARCH}" == "arm64" ]]; then
apt-get -qq update pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_aarch64.whl
apt-get -qq install --no-install-recommends --no-install-suggests -y \ pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_aarch64.whl
libedgetpu1-max python3-tflite-runtime python3-pycoral fi
# btbn-ffmpeg -> amd64 # btbn-ffmpeg -> amd64
if [[ "${TARGETARCH}" == "amd64" ]]; then if [[ "${TARGETARCH}" == "amd64" ]]; then
@ -65,23 +66,15 @@ fi
# arch specific packages # arch specific packages
if [[ "${TARGETARCH}" == "amd64" ]]; then if [[ "${TARGETARCH}" == "amd64" ]]; then
# use debian bookworm for amd / intel-i965 driver packages # install amd / intel-i965 driver packages
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y \ apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver intel-gpu-tools onevpl-tools \ i965-va-driver intel-gpu-tools onevpl-tools \
libva-drm2 \ libva-drm2 \
mesa-va-drivers radeontop mesa-va-drivers radeontop
# something about this dependency requires it to be installed in a separate call rather than in the line above
apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver-shaders
# intel packages use zst compression so we need to update dpkg # intel packages use zst compression so we need to update dpkg
apt-get install -y dpkg apt-get install -y dpkg
rm -f /etc/apt/sources.list.d/debian-bookworm.list
# use intel apt intel packages # use intel apt intel packages
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list

View File

@ -10,10 +10,10 @@ imutils == 0.5.*
joserfc == 1.0.* joserfc == 1.0.*
pathvalidate == 3.2.* pathvalidate == 3.2.*
markupsafe == 2.1.* markupsafe == 2.1.*
python-multipart == 0.0.12
# General
mypy == 1.6.1 mypy == 1.6.1
numpy == 1.26.*
onvif_zeep == 0.2.12 onvif_zeep == 0.2.12
opencv-python-headless == 4.9.0.*
paho-mqtt == 2.1.* paho-mqtt == 2.1.*
pandas == 2.2.* pandas == 2.2.*
peewee == 3.17.* peewee == 3.17.*
@ -27,15 +27,19 @@ ruamel.yaml == 0.18.*
tzlocal == 5.2 tzlocal == 5.2
requests == 2.32.* requests == 2.32.*
types-requests == 2.32.* types-requests == 2.32.*
scipy == 1.13.*
norfair == 2.2.* norfair == 2.2.*
setproctitle == 1.3.* setproctitle == 1.3.*
ws4py == 0.5.* ws4py == 0.5.*
unidecode == 1.3.* unidecode == 1.3.*
# Image Manipulation
numpy == 1.26.*
opencv-python-headless == 4.10.0.*
opencv-contrib-python == 4.9.0.*
scipy == 1.14.*
# OpenVino & ONNX # OpenVino & ONNX
openvino == 2024.3.* openvino == 2024.4.*
onnxruntime-openvino == 1.19.* ; platform_machine == 'x86_64' onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64'
onnxruntime == 1.19.* ; platform_machine == 'aarch64' onnxruntime == 1.20.* ; platform_machine == 'aarch64'
# Embeddings # Embeddings
transformers == 4.45.* transformers == 4.45.*
# Generative AI # Generative AI
@ -45,3 +49,6 @@ openai == 1.51.*
# push notifications # push notifications
py-vapid == 1.9.* py-vapid == 1.9.*
pywebpush == 2.0.* pywebpush == 2.0.*
# alpr
pyclipper == 1.3.*
shapely == 2.0.*

View File

@ -1,2 +1,2 @@
scikit-build == 0.17.* scikit-build == 0.18.*
nvidia-pyindex nvidia-pyindex

View File

@ -81,6 +81,9 @@ http {
open_file_cache_errors on; open_file_cache_errors on;
aio on; aio on;
# file upload size
client_max_body_size 10M;
# https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool # https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool
vod_open_file_thread_pool default; vod_open_file_thread_pool default;

View File

@ -8,6 +8,7 @@ COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
RUN sed -i "/https:\/\//d" /requirements-wheels.txt RUN sed -i "/https:\/\//d" /requirements-wheels.txt
RUN sed -i "/onnxruntime/d" /requirements-wheels.txt RUN sed -i "/onnxruntime/d" /requirements-wheels.txt
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
RUN rm -rf /rk-wheels/opencv_python-* RUN rm -rf /rk-wheels/opencv_python-*
@ -15,7 +16,7 @@ FROM deps AS rk-frigate
ARG TARGETARCH ARG TARGETARCH
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \ RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
pip3 install --no-deps -U /deps/rk-wheels/*.whl pip3 install --no-deps -U /deps/rk-wheels/*.whl --break-system-packages
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /

View File

@ -34,7 +34,7 @@ RUN mkdir -p /opt/rocm-dist/etc/ld.so.conf.d/
RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
####################################################################### #######################################################################
FROM --platform=linux/amd64 debian:11 as debian-base FROM --platform=linux/amd64 debian:12 as debian-base
RUN apt-get update && apt-get -y upgrade RUN apt-get update && apt-get -y upgrade
RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod
@ -51,7 +51,7 @@ COPY --from=rocm /opt/rocm-$ROCM /opt/rocm-$ROCM
RUN ln -s /opt/rocm-$ROCM /opt/rocm RUN ln -s /opt/rocm-$ROCM /opt/rocm
RUN apt-get -y install g++ cmake RUN apt-get -y install g++ cmake
RUN apt-get -y install python3-pybind11 python3.9-distutils python3-dev RUN apt-get -y install python3-pybind11 python3-distutils python3-dev
WORKDIR /opt/build WORKDIR /opt/build
@ -70,10 +70,11 @@ RUN apt-get -y install libnuma1
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /
COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt # Temporarily disabled to see if a new wheel can be built to support py3.11
RUN python3 -m pip install --upgrade pip \ #COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
&& pip3 uninstall -y onnxruntime-openvino \ #RUN python3 -m pip install --upgrade pip \
&& pip3 install -r /requirements.txt # && pip3 uninstall -y onnxruntime-openvino \
# && pip3 install -r /requirements.txt
####################################################################### #######################################################################
FROM scratch AS rocm-dist FROM scratch AS rocm-dist
@ -86,12 +87,12 @@ COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/ COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/ COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
COPY --from=rocm /opt/rocm-dist/ / COPY --from=rocm /opt/rocm-dist/ /
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-39-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/ COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-311-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
####################################################################### #######################################################################
FROM deps-prelim AS rocm-prelim-hsa-override0 FROM deps-prelim AS rocm-prelim-hsa-override0
\
ENV HSA_ENABLE_SDMA=0 ENV HSA_ENABLE_SDMA=0
COPY --from=rocm-dist / / COPY --from=rocm-dist / /

View File

@ -24,7 +24,7 @@ sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
if [[ "${TARGETARCH}" == "arm64" ]]; then if [[ "${TARGETARCH}" == "arm64" ]]; then
# add raspberry pi repo # add raspberry pi repo
gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bullseye main" | tee /etc/apt/sources.list.d/raspi.list echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bookworm main" | tee /etc/apt/sources.list.d/raspi.list
apt-get -qq update apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg
fi fi

View File

@ -7,18 +7,19 @@ ARG DEBIAN_FRONTEND=noninteractive
FROM wheels as trt-wheels FROM wheels as trt-wheels
ARG DEBIAN_FRONTEND ARG DEBIAN_FRONTEND
ARG TARGETARCH ARG TARGETARCH
RUN python3 -m pip config set global.break-system-packages true
# Add TensorRT wheels to another folder # Add TensorRT wheels to another folder
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
FROM tensorrt-base AS frigate-tensorrt FROM tensorrt-base AS frigate-tensorrt
ENV TRT_VER=8.5.3 ENV TRT_VER=8.6.1
RUN python3 -m pip config set global.break-system-packages true
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \ RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl && \ pip3 install -U /deps/trt-wheels/*.whl --break-system-packages && \
ldconfig ldconfig
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.9/dist-packages/tensorrt:/usr/local/cuda/lib64:/usr/local/lib/python3.9/dist-packages/nvidia/cufft/lib
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /
@ -31,4 +32,4 @@ COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda
COPY docker/tensorrt/detector/rootfs/ / COPY docker/tensorrt/detector/rootfs/ /
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \ RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl pip3 install -U /deps/trt-wheels/*.whl --break-system-packages

View File

@ -41,11 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh && TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
ADD https://nvidia.box.com/shared/static/9aemm4grzbbkfaesg5l7fplgjtmswhj8.whl /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl ADD https://nvidia.box.com/shared/static/psl23iw3bh7hlgku0mjo1xekxpego3e3.whl /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
RUN pip3 uninstall -y onnxruntime-openvino \ RUN pip3 uninstall -y onnxruntime-openvino \
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \ && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl && pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
FROM build-wheels AS trt-model-wheels FROM build-wheels AS trt-model-wheels
ARG DEBIAN_FRONTEND ARG DEBIAN_FRONTEND

View File

@ -3,7 +3,7 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable # https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.03-py3 ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.12-py3
# Build TensorRT-specific library # Build TensorRT-specific library
FROM ${TRT_BASE} AS trt-deps FROM ${TRT_BASE} AS trt-deps

View File

@ -1,6 +1,8 @@
/usr/local/lib /usr/local/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cudnn/lib /usr/local/cuda/lib64
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_runtime/lib /usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cublas/lib /usr/local/lib/python3.11/dist-packages/nvidia/cuda_runtime/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_nvrtc/lib /usr/local/lib/python3.11/dist-packages/nvidia/cublas/lib
/usr/local/lib/python3.9/dist-packages/tensorrt /usr/local/lib/python3.11/dist-packages/nvidia/cuda_nvrtc/lib
/usr/local/lib/python3.11/dist-packages/tensorrt
/usr/local/lib/python3.11/dist-packages/nvidia/cufft/lib

View File

@ -1,9 +1,9 @@
# NVidia TensorRT Support (amd64 only) # NVidia TensorRT Support (amd64 only)
--extra-index-url 'https://pypi.nvidia.com' --extra-index-url 'https://pypi.nvidia.com'
numpy < 1.24; platform_machine == 'x86_64' numpy < 1.24; platform_machine == 'x86_64'
tensorrt == 8.5.3.*; platform_machine == 'x86_64' tensorrt == 8.6.1.*; platform_machine == 'x86_64'
cuda-python == 11.8; platform_machine == 'x86_64' cuda-python == 11.8.*; platform_machine == 'x86_64'
cython == 0.29.*; platform_machine == 'x86_64' cython == 3.0.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64' nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64' nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64' nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'

View File

@ -67,14 +67,15 @@ ffmpeg:
### Annke C800 ### Annke C800
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be repackaged and the audio stream has to be converted to aac. Unfortunately direct playback of in the browser is not working (yet), but the downloaded clip can be played locally. This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be adjusted using the `apple_compatibility` config.
```yaml ```yaml
cameras: cameras:
annkec800: # <------ Name the camera annkec800: # <------ Name the camera
ffmpeg: ffmpeg:
apple_compatibility: true # <- Adds compatibility with MacOS and iPhone
output_args: output_args:
record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -tag:v hvc1 -bsf:v hevc_mp4toannexb -c:a aac record: preset-record-generic-audio-aac
inputs: inputs:
- path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera - path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera

View File

@ -0,0 +1,35 @@
---
id: face_recognition
title: Face Recognition
---
Face recognition allows people to be assigned names and when their face is recognized Frigate will assign the person's name as a sub label. This information is included in the UI, filters, as well as in notifications.
Frigate has support for FaceNet to create face embeddings, which runs locally. Embeddings are then saved to Frigate's database.
## Minimum System Requirements
Face recognition works by running a large AI model locally on your system. Systems without a GPU will not run Face Recognition reliably or at all.
## Configuration
Face recognition is disabled by default and requires semantic search to be enabled, face recognition must be enabled in your config file before it can be used. Semantic Search and face recognition are global configuration settings.
```yaml
face_recognition:
enabled: true
```
## Dataset
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
- Complexity of the task: A simple task like recognizing faces of known individuals may require fewer images than a complex task like identifying unknown individuals in a large crowd.
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
However, here are some general guidelines:
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.

View File

@ -175,6 +175,16 @@ For more information on the various values across different distributions, see h
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'` Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'`
#### Stats for SR-IOV devices
When using virtualized GPUs via SR-IOV, additional args are needed for GPU stats to function. This can be enabled with the following config:
```yaml
telemetry:
stats:
sriov: True
```
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver ## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams. VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.

View File

@ -0,0 +1,45 @@
---
id: license_plate_recognition
title: License Plate Recognition (LPR)
---
Frigate can recognize license plates on vehicles and automatically add the detected characters as a `sub_label` to objects that are of type `car`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street with a dedicated LPR camera.
Users running a Frigate+ model should ensure that `license_plate` is added to the [list of objects to track](https://docs.frigate.video/plus/#available-label-types) either globally or for a specific camera. This will improve the accuracy and performance of the LPR model.
LPR is most effective when the vehicles license plate is fully visible to the camera. For moving vehicles, Frigate will attempt to read the plate continuously, refining its detection and keeping the most confident result. LPR will not run on stationary vehicles.
## Minimum System Requirements
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and run on your CPU. At least 4GB of RAM is required.
## Configuration
License plate recognition is disabled by default. Enable it in your config file:
```yaml
lpr:
enabled: true
```
## Advanced Configuration
Several options are available to fine-tune the LPR feature. For example, you can adjust the `min_area` setting, which defines the minimum size in pixels a license plate must be before LPR runs. The default is 500 pixels.
Additionally, you can define `known_plates` as strings or regular expressions, allowing Frigate to label tracked vehicles with custom sub_labels when a recognized plate is detected. This information is then accessible in the UI, filters, and notifications.
```yaml
lpr:
enabled: true
min_area: 500
known_plates:
Wife's Car:
- "ABC-1234"
- "ABC-I234"
Johnny:
- "J*N-*234" # Using wildcards for H/M and 1/I
Sally:
- "[S5]LL-1234" # Matches SLL-1234 and 5LL-1234
```
In this example, "Wife's Car" will appear as the label for any vehicle matching the plate "ABC-1234." The model might occasionally interpret the digit 1 as a capital I (e.g., "ABC-I234"), so both variations are listed. Similarly, multiple possible variations are specified for Johnny and Sally.

View File

@ -242,6 +242,8 @@ ffmpeg:
# If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage # If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage
# NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout. # NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout.
retry_interval: 10 retry_interval: 10
# Optional: Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players. (default: shown below)
apple_compatibility: false
# Optional: Detect configuration # Optional: Detect configuration
# NOTE: Can be overridden at the camera level # NOTE: Can be overridden at the camera level
@ -522,6 +524,14 @@ semantic_search:
# NOTE: small model runs on CPU and large model runs on GPU # NOTE: small model runs on CPU and large model runs on GPU
model_size: "small" model_size: "small"
# Optional: Configuration for face recognition capability
face_recognition:
# Optional: Enable semantic search (default: shown below)
enabled: False
# Optional: Set the model size used for embeddings. (default: shown below)
# NOTE: small model runs on CPU and large model runs on GPU
model_size: "small"
# Optional: Configuration for AI generated tracked object descriptions # Optional: Configuration for AI generated tracked object descriptions
# NOTE: Semantic Search must be enabled for this to do anything. # NOTE: Semantic Search must be enabled for this to do anything.
# WARNING: Depending on the provider, this will send thumbnails over the internet # WARNING: Depending on the provider, this will send thumbnails over the internet
@ -803,11 +813,13 @@ telemetry:
- lo - lo
# Optional: Configure system stats # Optional: Configure system stats
stats: stats:
# Enable AMD GPU stats (default: shown below) # Optional: Enable AMD GPU stats (default: shown below)
amd_gpu_stats: True amd_gpu_stats: True
# Enable Intel GPU stats (default: shown below) # Optional: Enable Intel GPU stats (default: shown below)
intel_gpu_stats: True intel_gpu_stats: True
# Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below) # Optional: Treat GPU as SR-IOV to fix GPU stats (default: shown below)
sriov: False
# Optional: Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
# NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled. # NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled.
network_bandwidth: False network_bandwidth: False
# Optional: Enable the latest version outbound check (default: shown below) # Optional: Enable the latest version outbound check (default: shown below)

View File

@ -36,6 +36,8 @@ const sidebars: SidebarsConfig = {
'Semantic Search': [ 'Semantic Search': [
'configuration/semantic_search', 'configuration/semantic_search',
'configuration/genai', 'configuration/genai',
'configuration/face_recognition',
'configuration/license_plate_recognition',
], ],
Cameras: [ Cameras: [
'configuration/cameras', 'configuration/cameras',

View File

@ -3,12 +3,15 @@ import faulthandler
import signal import signal
import sys import sys
import threading import threading
from typing import Union
import ruamel.yaml
from pydantic import ValidationError from pydantic import ValidationError
from frigate.app import FrigateApp from frigate.app import FrigateApp
from frigate.config import FrigateConfig from frigate.config import FrigateConfig
from frigate.log import setup_logging from frigate.log import setup_logging
from frigate.util.config import find_config_file
def main() -> None: def main() -> None:
@ -42,10 +45,50 @@ def main() -> None:
print("*************************************************************") print("*************************************************************")
print("*************************************************************") print("*************************************************************")
print("*** Config Validation Errors ***") print("*** Config Validation Errors ***")
print("*************************************************************") print("*************************************************************\n")
# Attempt to get the original config file for line number tracking
config_path = find_config_file()
with open(config_path, "r") as f:
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(f)
for error in e.errors(): for error in e.errors():
location = ".".join(str(item) for item in error["loc"]) error_path = error["loc"]
print(f"{location}: {error['msg']}")
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key: Union[int, str] = (
int(part) if isinstance(part, str) and part.isdigit() else part
)
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
if isinstance(key, int):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception as traverse_error:
print(f"Could not determine exact line number: {traverse_error}")
print(f"Line # : {line_number}")
print(f"Key : {' -> '.join(map(str, error_path))}")
print(f"Value : {error.get('input','-')}")
print(f"Message : {error.get('msg', error.get('type', 'Unknown'))}\n")
print("*************************************************************") print("*************************************************************")
print("*** End Config Validation Errors ***") print("*** End Config Validation Errors ***")
print("*************************************************************") print("*************************************************************")

View File

@ -7,15 +7,18 @@ import os
import traceback import traceback
from datetime import datetime, timedelta from datetime import datetime, timedelta
from functools import reduce from functools import reduce
from io import StringIO
from typing import Any, Optional from typing import Any, Optional
import requests import requests
import ruamel.yaml
from fastapi import APIRouter, Body, Path, Request, Response from fastapi import APIRouter, Body, Path, Request, Response
from fastapi.encoders import jsonable_encoder from fastapi.encoders import jsonable_encoder
from fastapi.params import Depends from fastapi.params import Depends
from fastapi.responses import JSONResponse, PlainTextResponse from fastapi.responses import JSONResponse, PlainTextResponse
from markupsafe import escape from markupsafe import escape
from peewee import operator from peewee import operator
from pydantic import ValidationError
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.request.app_body import AppConfigSetBody from frigate.api.defs.request.app_body import AppConfigSetBody
@ -183,7 +186,6 @@ def config_raw():
@router.post("/config/save") @router.post("/config/save")
def config_save(save_option: str, body: Any = Body(media_type="text/plain")): def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
new_config = body.decode() new_config = body.decode()
if not new_config: if not new_config:
return JSONResponse( return JSONResponse(
content=( content=(
@ -194,13 +196,64 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Validate the config schema # Validate the config schema
try: try:
# Use ruamel to parse and preserve line numbers
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(StringIO(new_config))
FrigateConfig.parse_yaml(new_config) FrigateConfig.parse_yaml(new_config)
except ValidationError as e:
error_message = []
for error in e.errors():
error_path = error["loc"]
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key = int(part) if part.isdigit() else part
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception:
line_number = "Unable to determine"
error_message.append(
f"Line {line_number}: {' -> '.join(map(str, error_path))} - {error.get('msg', error.get('type', 'Unknown'))}"
)
return JSONResponse(
content=(
{
"success": False,
"message": "Your configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n"
+ "\n".join(error_message),
}
),
status_code=400,
)
except Exception: except Exception:
return JSONResponse( return JSONResponse(
content=( content=(
{ {
"success": False, "success": False,
"message": f"\nConfig Error:\n\n{escape(str(traceback.format_exc()))}", "message": f"\nYour configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n{escape(str(traceback.format_exc()))}",
} }
), ),
status_code=400, status_code=400,

View File

@ -0,0 +1,101 @@
"""Object classification APIs."""
import logging
import os
import random
import shutil
import string
from fastapi import APIRouter, Request, UploadFile
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filename
from frigate.api.defs.tags import Tags
from frigate.const import FACE_DIR
from frigate.embeddings import EmbeddingsContext
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/faces")
def get_faces():
face_dict: dict[str, list[str]] = {}
for name in os.listdir(FACE_DIR):
face_dict[name] = []
face_dir = os.path.join(FACE_DIR, name)
if not os.path.isdir(face_dir):
continue
for file in os.listdir(face_dir):
face_dict[name].append(file)
return JSONResponse(status_code=200, content=face_dict)
@router.post("/faces/{name}")
async def register_face(request: Request, name: str, file: UploadFile):
context: EmbeddingsContext = request.app.embeddings
context.register_face(name, await file.read())
return JSONResponse(
status_code=200,
content={"success": True, "message": "Successfully registered face."},
)
@router.post("/faces/train/{name}/classify")
def train_face(name: str, body: dict = None):
json: dict[str, any] = body or {}
training_file = os.path.join(
FACE_DIR, f"train/{sanitize_filename(json.get('training_file', ''))}"
)
if not training_file or not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file}",
}
),
status_code=404,
)
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
new_name = f"{name}-{rand_id}.webp"
new_file = os.path.join(FACE_DIR, f"{name}/{new_name}")
shutil.move(training_file, new_file)
return JSONResponse(
content=(
{
"success": True,
"message": f"Successfully saved {training_file} as {new_name}.",
}
),
status_code=200,
)
@router.post("/faces/{name}/delete")
def deregister_faces(request: Request, name: str, body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
content=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
context.delete_face_ids(
name, map(lambda file: sanitize_filename(file), list_of_ids)
)
return JSONResponse(
content=({"success": True, "message": "Successfully deleted faces."}),
status_code=200,
)

View File

@ -20,6 +20,7 @@ class MediaLatestFrameQueryParams(BaseModel):
regions: Optional[int] = None regions: Optional[int] = None
quality: Optional[int] = 70 quality: Optional[int] = 70
height: Optional[int] = None height: Optional[int] = None
store: Optional[int] = None
class MediaEventsSnapshotQueryParams(BaseModel): class MediaEventsSnapshotQueryParams(BaseModel):

View File

@ -8,6 +8,9 @@ class EventsSubLabelBody(BaseModel):
subLabelScore: Optional[float] = Field( subLabelScore: Optional[float] = Field(
title="Score for sub label", default=None, gt=0.0, le=1.0 title="Score for sub label", default=None, gt=0.0, le=1.0
) )
camera: Optional[str] = Field(
title="Camera this object is detected on.", default=None
)
class EventsDescriptionBody(BaseModel): class EventsDescriptionBody(BaseModel):

View File

@ -10,4 +10,5 @@ class Tags(Enum):
review = "Review" review = "Review"
export = "Export" export = "Export"
events = "Events" events = "Events"
classification = "classification"
auth = "Auth" auth = "Auth"

View File

@ -909,38 +909,59 @@ def set_sub_label(
try: try:
event: Event = Event.get(Event.id == event_id) event: Event = Event.get(Event.id == event_id)
except DoesNotExist: except DoesNotExist:
if not body.camera:
return JSONResponse(
content=(
{
"success": False,
"message": "Event "
+ event_id
+ " not found and camera is not provided.",
}
),
status_code=404,
)
event = None
if request.app.detected_frames_processor:
tracked_obj: TrackedObject = (
request.app.detected_frames_processor.camera_states[
event.camera if event else body.camera
].tracked_objects.get(event_id)
)
else:
tracked_obj = None
if not event and not tracked_obj:
return JSONResponse( return JSONResponse(
content=({"success": False, "message": "Event " + event_id + " not found"}), content=(
{"success": False, "message": "Event " + event_id + " not found."}
),
status_code=404, status_code=404,
) )
new_sub_label = body.subLabel new_sub_label = body.subLabel
new_score = body.subLabelScore new_score = body.subLabelScore
if not event.end_time: if tracked_obj:
# update tracked object tracked_obj.obj_data["sub_label"] = (new_sub_label, new_score)
tracked_obj: TrackedObject = (
request.app.detected_frames_processor.camera_states[
event.camera
].tracked_objects.get(event.id)
)
if tracked_obj:
tracked_obj.obj_data["sub_label"] = (new_sub_label, new_score)
# update timeline items # update timeline items
Timeline.update( Timeline.update(
data=Timeline.data.update({"sub_label": (new_sub_label, new_score)}) data=Timeline.data.update({"sub_label": (new_sub_label, new_score)})
).where(Timeline.source_id == event_id).execute() ).where(Timeline.source_id == event_id).execute()
event.sub_label = new_sub_label if event:
event.sub_label = new_sub_label
if new_score: if new_score:
data = event.data data = event.data
data["sub_label_score"] = new_score data["sub_label_score"] = new_score
event.data = data event.data = data
event.save()
event.save()
return JSONResponse( return JSONResponse(
content=( content=(
{ {

View File

@ -11,7 +11,16 @@ from starlette_context import middleware, plugins
from starlette_context.plugins import Plugin from starlette_context.plugins import Plugin
from frigate.api import app as main_app from frigate.api import app as main_app
from frigate.api import auth, event, export, media, notification, preview, review from frigate.api import (
auth,
classification,
event,
export,
media,
notification,
preview,
review,
)
from frigate.api.auth import get_jwt_secret, limiter from frigate.api.auth import get_jwt_secret, limiter
from frigate.comms.event_metadata_updater import ( from frigate.comms.event_metadata_updater import (
EventMetadataPublisher, EventMetadataPublisher,
@ -99,6 +108,7 @@ def create_fastapi_app(
# Routes # Routes
# Order of include_router matters: https://fastapi.tiangolo.com/tutorial/path-params/#order-matters # Order of include_router matters: https://fastapi.tiangolo.com/tutorial/path-params/#order-matters
app.include_router(auth.router) app.include_router(auth.router)
app.include_router(classification.router)
app.include_router(review.router) app.include_router(review.router)
app.include_router(main_app.router) app.include_router(main_app.router)
app.include_router(preview.router) app.include_router(preview.router)

View File

@ -179,7 +179,12 @@ def latest_frame(
return Response( return Response(
content=img.tobytes(), content=img.tobytes(),
media_type=f"image/{extension}", media_type=f"image/{extension}",
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"}, headers={
"Content-Type": f"image/{extension}",
"Cache-Control": "no-store"
if not params.store
else "private, max-age=60",
},
) )
elif camera_name == "birdseye" and request.app.frigate_config.birdseye.restream: elif camera_name == "birdseye" and request.app.frigate_config.birdseye.restream:
frame = cv2.cvtColor( frame = cv2.cvtColor(
@ -198,7 +203,12 @@ def latest_frame(
return Response( return Response(
content=img.tobytes(), content=img.tobytes(),
media_type=f"image/{extension}", media_type=f"image/{extension}",
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"}, headers={
"Content-Type": f"image/{extension}",
"Cache-Control": "no-store"
if not params.store
else "private, max-age=60",
},
) )
else: else:
return JSONResponse( return JSONResponse(

View File

@ -12,6 +12,7 @@ class EmbeddingsRequestEnum(Enum):
embed_description = "embed_description" embed_description = "embed_description"
embed_thumbnail = "embed_thumbnail" embed_thumbnail = "embed_thumbnail"
generate_search = "generate_search" generate_search = "generate_search"
register_face = "register_face"
class EmbeddingsResponder: class EmbeddingsResponder:
@ -22,7 +23,7 @@ class EmbeddingsResponder:
def check_for_request(self, process: Callable) -> None: def check_for_request(self, process: Callable) -> None:
while True: # load all messages that are queued while True: # load all messages that are queued
has_message, _, _ = zmq.select([self.socket], [], [], 0.1) has_message, _, _ = zmq.select([self.socket], [], [], 0.01)
if not has_message: if not has_message:
break break

View File

@ -167,7 +167,7 @@ class CameraConfig(FrigateBaseModel):
record_args = get_ffmpeg_arg_list( record_args = get_ffmpeg_arg_list(
parse_preset_output_record( parse_preset_output_record(
self.ffmpeg.output_args.record, self.ffmpeg.output_args.record,
self.ffmpeg.output_args._force_record_hvc1, self.ffmpeg.apple_compatibility,
) )
or self.ffmpeg.output_args.record or self.ffmpeg.output_args.record
) )

View File

@ -2,7 +2,7 @@ import shutil
from enum import Enum from enum import Enum
from typing import Union from typing import Union
from pydantic import Field, PrivateAttr, field_validator from pydantic import Field, field_validator
from frigate.const import DEFAULT_FFMPEG_VERSION, INCLUDED_FFMPEG_VERSIONS from frigate.const import DEFAULT_FFMPEG_VERSION, INCLUDED_FFMPEG_VERSIONS
@ -42,7 +42,6 @@ class FfmpegOutputArgsConfig(FrigateBaseModel):
default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT, default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT,
title="Record role FFmpeg output arguments.", title="Record role FFmpeg output arguments.",
) )
_force_record_hvc1: bool = PrivateAttr(default=False)
class FfmpegConfig(FrigateBaseModel): class FfmpegConfig(FrigateBaseModel):
@ -64,6 +63,10 @@ class FfmpegConfig(FrigateBaseModel):
default=10.0, default=10.0,
title="Time in seconds to wait before FFmpeg retries connecting to the camera.", title="Time in seconds to wait before FFmpeg retries connecting to the camera.",
) )
apple_compatibility: bool = Field(
default=False,
title="Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players.",
)
@property @property
def ffmpeg_path(self) -> str: def ffmpeg_path(self) -> str:

View File

@ -1,6 +1,6 @@
from typing import Any, Optional, Union from typing import Any, Optional, Union
from pydantic import Field, field_serializer from pydantic import Field, PrivateAttr, field_serializer
from ..base import FrigateBaseModel from ..base import FrigateBaseModel
@ -53,3 +53,20 @@ class ObjectConfig(FrigateBaseModel):
default_factory=dict, title="Object filters." default_factory=dict, title="Object filters."
) )
mask: Union[str, list[str]] = Field(default="", title="Object mask.") mask: Union[str, list[str]] = Field(default="", title="Object mask.")
_all_objects: list[str] = PrivateAttr()
@property
def all_objects(self) -> list[str]:
return self._all_objects
def parse_all_objects(self, cameras):
if "_all_objects" in self:
return
# get list of unique enabled labels for tracking
enabled_labels = set(self.track)
for camera in cameras.values():
enabled_labels.update(camera.objects.track)
self._all_objects = list(enabled_labels)

View File

@ -57,7 +57,11 @@ from .logger import LoggerConfig
from .mqtt import MqttConfig from .mqtt import MqttConfig
from .notification import NotificationConfig from .notification import NotificationConfig
from .proxy import ProxyConfig from .proxy import ProxyConfig
from .semantic_search import SemanticSearchConfig from .semantic_search import (
FaceRecognitionConfig,
LicensePlateRecognitionConfig,
SemanticSearchConfig,
)
from .telemetry import TelemetryConfig from .telemetry import TelemetryConfig
from .tls import TlsConfig from .tls import TlsConfig
from .ui import UIConfig from .ui import UIConfig
@ -159,6 +163,16 @@ class RestreamConfig(BaseModel):
model_config = ConfigDict(extra="allow") model_config = ConfigDict(extra="allow")
def verify_semantic_search_dependent_configs(config: FrigateConfig) -> None:
"""Verify that semantic search is enabled if required features are enabled."""
if not config.semantic_search.enabled:
if config.genai.enabled:
raise ValueError("Genai requires semantic search to be enabled.")
if config.face_recognition.enabled:
raise ValueError("Face recognition requires semantic to be enabled.")
def verify_config_roles(camera_config: CameraConfig) -> None: def verify_config_roles(camera_config: CameraConfig) -> None:
"""Verify that roles are setup in the config correctly.""" """Verify that roles are setup in the config correctly."""
assigned_roles = list( assigned_roles = list(
@ -320,6 +334,13 @@ class FrigateConfig(FrigateBaseModel):
semantic_search: SemanticSearchConfig = Field( semantic_search: SemanticSearchConfig = Field(
default_factory=SemanticSearchConfig, title="Semantic search configuration." default_factory=SemanticSearchConfig, title="Semantic search configuration."
) )
face_recognition: FaceRecognitionConfig = Field(
default_factory=FaceRecognitionConfig, title="Face recognition config."
)
lpr: LicensePlateRecognitionConfig = Field(
default_factory=LicensePlateRecognitionConfig,
title="License Plate recognition config.",
)
ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.") ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.")
# Detector config # Detector config
@ -437,13 +458,12 @@ class FrigateConfig(FrigateBaseModel):
camera_config.ffmpeg.hwaccel_args = self.ffmpeg.hwaccel_args camera_config.ffmpeg.hwaccel_args = self.ffmpeg.hwaccel_args
for input in camera_config.ffmpeg.inputs: for input in camera_config.ffmpeg.inputs:
need_record_fourcc = False and "record" in input.roles
need_detect_dimensions = "detect" in input.roles and ( need_detect_dimensions = "detect" in input.roles and (
camera_config.detect.height is None camera_config.detect.height is None
or camera_config.detect.width is None or camera_config.detect.width is None
) )
if need_detect_dimensions or need_record_fourcc: if need_detect_dimensions:
stream_info = {"width": 0, "height": 0, "fourcc": None} stream_info = {"width": 0, "height": 0, "fourcc": None}
try: try:
stream_info = stream_info_retriever.get_stream_info( stream_info = stream_info_retriever.get_stream_info(
@ -467,14 +487,6 @@ class FrigateConfig(FrigateBaseModel):
else DEFAULT_DETECT_DIMENSIONS["height"] else DEFAULT_DETECT_DIMENSIONS["height"]
) )
if need_record_fourcc:
# Apple only supports HEVC if it is hvc1 (vs. hev1)
camera_config.ffmpeg.output_args._force_record_hvc1 = (
stream_info["fourcc"] == "hevc"
if stream_info.get("hevc")
else False
)
# Warn if detect fps > 10 # Warn if detect fps > 10
if camera_config.detect.fps > 10: if camera_config.detect.fps > 10:
logger.warning( logger.warning(
@ -578,13 +590,8 @@ class FrigateConfig(FrigateBaseModel):
verify_autotrack_zones(camera_config) verify_autotrack_zones(camera_config)
verify_motion_and_detect(camera_config) verify_motion_and_detect(camera_config)
# get list of unique enabled labels for tracking self.objects.parse_all_objects(self.cameras)
enabled_labels = set(self.objects.track) self.model.create_colormap(sorted(self.objects.all_objects))
for camera in self.cameras.values():
enabled_labels.update(camera.objects.track)
self.model.create_colormap(sorted(enabled_labels))
self.model.check_and_load_plus_model(self.plus_api) self.model.check_and_load_plus_model(self.plus_api)
for key, detector in self.detectors.items(): for key, detector in self.detectors.items():
@ -625,6 +632,7 @@ class FrigateConfig(FrigateBaseModel):
detector_config.model.compute_model_hash() detector_config.model.compute_model_hash()
self.detectors[key] = detector_config self.detectors[key] = detector_config
verify_semantic_search_dependent_configs(self)
return self return self
@field_validator("cameras") @field_validator("cameras")

View File

@ -1,10 +1,14 @@
from typing import Optional from typing import Dict, List, Optional
from pydantic import Field from pydantic import Field
from .base import FrigateBaseModel from .base import FrigateBaseModel
__all__ = ["SemanticSearchConfig"] __all__ = [
"FaceRecognitionConfig",
"SemanticSearchConfig",
"LicensePlateRecognitionConfig",
]
class SemanticSearchConfig(FrigateBaseModel): class SemanticSearchConfig(FrigateBaseModel):
@ -15,3 +19,40 @@ class SemanticSearchConfig(FrigateBaseModel):
model_size: str = Field( model_size: str = Field(
default="small", title="The size of the embeddings model used." default="small", title="The size of the embeddings model used."
) )
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_score: float = Field(
title="Minimum face distance score required to save the attempt.",
default=0.8,
gt=0.0,
le=1.0,
)
threshold: float = Field(
default=0.9,
title="Minimum face distance score required to be considered a match.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."
)
save_attempts: bool = Field(
default=True, title="Save images of face detections for training."
)
class LicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
threshold: float = Field(
default=0.9,
title="License plate confidence score required to be added to the object as a sub label.",
)
min_area: int = Field(
default=500,
title="Min area of license plate to consider running license plate recognition.",
)
known_plates: Optional[Dict[str, List[str]]] = Field(
default={}, title="Known plates to track."
)

View File

@ -11,6 +11,9 @@ class StatsConfig(FrigateBaseModel):
network_bandwidth: bool = Field( network_bandwidth: bool = Field(
default=False, title="Enable network bandwidth for ffmpeg processes." default=False, title="Enable network bandwidth for ffmpeg processes."
) )
sriov: bool = Field(
default=False, title="Treat device as SR-IOV to support GPU stats."
)
class TelemetryConfig(FrigateBaseModel): class TelemetryConfig(FrigateBaseModel):

View File

@ -5,8 +5,9 @@ DEFAULT_DB_PATH = f"{CONFIG_DIR}/frigate.db"
MODEL_CACHE_DIR = f"{CONFIG_DIR}/model_cache" MODEL_CACHE_DIR = f"{CONFIG_DIR}/model_cache"
BASE_DIR = "/media/frigate" BASE_DIR = "/media/frigate"
CLIPS_DIR = f"{BASE_DIR}/clips" CLIPS_DIR = f"{BASE_DIR}/clips"
RECORD_DIR = f"{BASE_DIR}/recordings"
EXPORT_DIR = f"{BASE_DIR}/exports" EXPORT_DIR = f"{BASE_DIR}/exports"
FACE_DIR = f"{CLIPS_DIR}/faces"
RECORD_DIR = f"{BASE_DIR}/recordings"
BIRDSEYE_PIPE = "/tmp/cache/birdseye" BIRDSEYE_PIPE = "/tmp/cache/birdseye"
CACHE_DIR = "/tmp/cache" CACHE_DIR = "/tmp/cache"
FRIGATE_LOCALHOST = "http://127.0.0.1:5000" FRIGATE_LOCALHOST = "http://127.0.0.1:5000"
@ -64,6 +65,7 @@ INCLUDED_FFMPEG_VERSIONS = ["7.0", "5.0"]
FFMPEG_HWACCEL_NVIDIA = "preset-nvidia" FFMPEG_HWACCEL_NVIDIA = "preset-nvidia"
FFMPEG_HWACCEL_VAAPI = "preset-vaapi" FFMPEG_HWACCEL_VAAPI = "preset-vaapi"
FFMPEG_HWACCEL_VULKAN = "preset-vulkan" FFMPEG_HWACCEL_VULKAN = "preset-vulkan"
FFMPEG_HVC1_ARGS = ["-tag:v", "hvc1"]
# Regex constants # Regex constants

View File

@ -1,5 +1,6 @@
"""SQLite-vec embeddings database.""" """SQLite-vec embeddings database."""
import base64
import json import json
import logging import logging
import multiprocessing as mp import multiprocessing as mp
@ -13,7 +14,7 @@ from setproctitle import setproctitle
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.config import FrigateConfig from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR from frigate.const import CONFIG_DIR, FACE_DIR
from frigate.db.sqlitevecq import SqliteVecQueueDatabase from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event from frigate.models import Event
from frigate.util.builtin import serialize from frigate.util.builtin import serialize
@ -189,6 +190,33 @@ class EmbeddingsContext:
return results return results
def register_face(self, face_name: str, image_data: bytes) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.register_face.value,
{
"face_name": face_name,
"image": base64.b64encode(image_data).decode("ASCII"),
},
)
def get_face_ids(self, name: str) -> list[str]:
sql_query = f"""
SELECT
id
FROM vec_descriptions
WHERE id LIKE '%{name}%'
"""
return self.db.execute_sql(sql_query).fetchall()
def delete_face_ids(self, face: str, ids: list[str]) -> None:
folder = os.path.join(FACE_DIR, face)
for id in ids:
file_path = os.path.join(folder, id)
if os.path.isfile(file_path):
os.unlink(file_path)
def update_description(self, event_id: str, description: str) -> None: def update_description(self, event_id: str, description: str) -> None:
self.requestor.send_data( self.requestor.send_data(
EmbeddingsRequestEnum.embed_description.value, EmbeddingsRequestEnum.embed_description.value,

View File

@ -9,7 +9,7 @@ from numpy import ndarray
from playhouse.shortcuts import model_to_dict from playhouse.shortcuts import model_to_dict
from frigate.comms.inter_process import InterProcessRequestor from frigate.comms.inter_process import InterProcessRequestor
from frigate.config.semantic_search import SemanticSearchConfig from frigate.config import FrigateConfig
from frigate.const import ( from frigate.const import (
CONFIG_DIR, CONFIG_DIR,
UPDATE_EMBEDDINGS_REINDEX_PROGRESS, UPDATE_EMBEDDINGS_REINDEX_PROGRESS,
@ -59,9 +59,7 @@ def get_metadata(event: Event) -> dict:
class Embeddings: class Embeddings:
"""SQLite-vec embeddings database.""" """SQLite-vec embeddings database."""
def __init__( def __init__(self, config: FrigateConfig, db: SqliteVecQueueDatabase) -> None:
self, config: SemanticSearchConfig, db: SqliteVecQueueDatabase
) -> None:
self.config = config self.config = config
self.db = db self.db = db
self.requestor = InterProcessRequestor() self.requestor = InterProcessRequestor()
@ -73,9 +71,13 @@ class Embeddings:
"jinaai/jina-clip-v1-text_model_fp16.onnx", "jinaai/jina-clip-v1-text_model_fp16.onnx",
"jinaai/jina-clip-v1-tokenizer", "jinaai/jina-clip-v1-tokenizer",
"jinaai/jina-clip-v1-vision_model_fp16.onnx" "jinaai/jina-clip-v1-vision_model_fp16.onnx"
if config.model_size == "large" if config.semantic_search.model_size == "large"
else "jinaai/jina-clip-v1-vision_model_quantized.onnx", else "jinaai/jina-clip-v1-vision_model_quantized.onnx",
"jinaai/jina-clip-v1-preprocessor_config.json", "jinaai/jina-clip-v1-preprocessor_config.json",
"facenet-facenet.onnx",
"paddleocr-onnx-detection.onnx",
"paddleocr-onnx-classification.onnx",
"paddleocr-onnx-recognition.onnx",
] ]
for model in models: for model in models:
@ -94,7 +96,7 @@ class Embeddings:
download_urls={ download_urls={
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx", "text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
}, },
model_size=config.model_size, model_size=config.semantic_search.model_size,
model_type=ModelTypeEnum.text, model_type=ModelTypeEnum.text,
requestor=self.requestor, requestor=self.requestor,
device="CPU", device="CPU",
@ -102,7 +104,7 @@ class Embeddings:
model_file = ( model_file = (
"vision_model_fp16.onnx" "vision_model_fp16.onnx"
if self.config.model_size == "large" if self.config.semantic_search.model_size == "large"
else "vision_model_quantized.onnx" else "vision_model_quantized.onnx"
) )
@ -115,12 +117,66 @@ class Embeddings:
model_name="jinaai/jina-clip-v1", model_name="jinaai/jina-clip-v1",
model_file=model_file, model_file=model_file,
download_urls=download_urls, download_urls=download_urls,
model_size=config.model_size, model_size=config.semantic_search.model_size,
model_type=ModelTypeEnum.vision, model_type=ModelTypeEnum.vision,
requestor=self.requestor, requestor=self.requestor,
device="GPU" if config.model_size == "large" else "CPU", device="GPU" if config.semantic_search.model_size == "large" else "CPU",
) )
if self.config.face_recognition.enabled:
self.face_embedding = GenericONNXEmbedding(
model_name="facedet",
model_file="facedet.onnx",
download_urls={
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
},
model_size="small",
model_type=ModelTypeEnum.face,
requestor=self.requestor,
)
self.lpr_detection_model = None
self.lpr_classification_model = None
self.lpr_recognition_model = None
if self.config.lpr.enabled:
self.lpr_detection_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="detection.onnx",
download_urls={
"detection.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/detection.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_detect,
requestor=self.requestor,
device="CPU",
)
self.lpr_classification_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="classification.onnx",
download_urls={
"classification.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/classification.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_classify,
requestor=self.requestor,
device="CPU",
)
self.lpr_recognition_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="recognition.onnx",
download_urls={
"recognition.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/recognition.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_recognize,
requestor=self.requestor,
device="CPU",
)
def embed_thumbnail( def embed_thumbnail(
self, event_id: str, thumbnail: bytes, upsert: bool = True self, event_id: str, thumbnail: bytes, upsert: bool = True
) -> ndarray: ) -> ndarray:

View File

@ -31,11 +31,16 @@ warnings.filterwarnings(
disable_progress_bar() disable_progress_bar()
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
FACE_EMBEDDING_SIZE = 160
class ModelTypeEnum(str, Enum): class ModelTypeEnum(str, Enum):
face = "face" face = "face"
vision = "vision" vision = "vision"
text = "text" text = "text"
lpr_detect = "lpr_detect"
lpr_classify = "lpr_classify"
lpr_recognize = "lpr_recognize"
class GenericONNXEmbedding: class GenericONNXEmbedding:
@ -47,7 +52,7 @@ class GenericONNXEmbedding:
model_file: str, model_file: str,
download_urls: Dict[str, str], download_urls: Dict[str, str],
model_size: str, model_size: str,
model_type: str, model_type: ModelTypeEnum,
requestor: InterProcessRequestor, requestor: InterProcessRequestor,
tokenizer_file: Optional[str] = None, tokenizer_file: Optional[str] = None,
device: str = "AUTO", device: str = "AUTO",
@ -57,7 +62,7 @@ class GenericONNXEmbedding:
self.tokenizer_file = tokenizer_file self.tokenizer_file = tokenizer_file
self.requestor = requestor self.requestor = requestor
self.download_urls = download_urls self.download_urls = download_urls
self.model_type = model_type # 'text' or 'vision' self.model_type = model_type
self.model_size = model_size self.model_size = model_size
self.device = device self.device = device
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name) self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
@ -87,12 +92,13 @@ class GenericONNXEmbedding:
files_names, files_names,
ModelStatusTypesEnum.downloaded, ModelStatusTypesEnum.downloaded,
) )
self._load_model_and_tokenizer() self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}") logger.debug(f"models are already downloaded for {self.model_name}")
def _download_model(self, path: str): def _download_model(self, path: str):
try: try:
file_name = os.path.basename(path) file_name = os.path.basename(path)
if file_name in self.download_urls: if file_name in self.download_urls:
ModelDownloader.download_from_url(self.download_urls[file_name], path) ModelDownloader.download_from_url(self.download_urls[file_name], path)
elif ( elif (
@ -101,6 +107,7 @@ class GenericONNXEmbedding:
): ):
if not os.path.exists(path + "/" + self.model_name): if not os.path.exists(path + "/" + self.model_name):
logger.info(f"Downloading {self.model_name} tokenizer") logger.info(f"Downloading {self.model_name} tokenizer")
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
self.model_name, self.model_name,
trust_remote_code=True, trust_remote_code=True,
@ -125,14 +132,23 @@ class GenericONNXEmbedding:
}, },
) )
def _load_model_and_tokenizer(self): def _load_model_and_utils(self):
if self.runner is None: if self.runner is None:
if self.downloader: if self.downloader:
self.downloader.wait_for_download() self.downloader.wait_for_download()
if self.model_type == ModelTypeEnum.text: if self.model_type == ModelTypeEnum.text:
self.tokenizer = self._load_tokenizer() self.tokenizer = self._load_tokenizer()
else: elif self.model_type == ModelTypeEnum.vision:
self.feature_extractor = self._load_feature_extractor() self.feature_extractor = self._load_feature_extractor()
elif self.model_type == ModelTypeEnum.face:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_detect:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_classify:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_recognize:
self.feature_extractor = []
self.runner = ONNXModelRunner( self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file), os.path.join(self.download_path, self.model_file),
self.device, self.device,
@ -172,23 +188,72 @@ class GenericONNXEmbedding:
self.feature_extractor(images=image, return_tensors="np") self.feature_extractor(images=image, return_tensors="np")
for image in processed_images for image in processed_images
] ]
elif self.model_type == ModelTypeEnum.face:
if isinstance(raw_inputs, list):
raise ValueError("Face embedding does not support batch inputs.")
pil = self._process_image(raw_inputs)
# handle images larger than input size
width, height = pil.size
if width != FACE_EMBEDDING_SIZE or height != FACE_EMBEDDING_SIZE:
if width > height:
new_height = int(((height / width) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((FACE_EMBEDDING_SIZE, new_height))
else:
new_width = int(((width / height) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((new_width, FACE_EMBEDDING_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.full(
(FACE_EMBEDDING_SIZE, FACE_EMBEDDING_SIZE, channels),
(0, 0, 0),
dtype=np.float32,
)
# compute center offset
x_center = (FACE_EMBEDDING_SIZE - og_w) // 2
y_center = (FACE_EMBEDDING_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
frame = np.expand_dims(frame, axis=0)
return [{"input_2": frame}]
elif self.model_type == ModelTypeEnum.lpr_detect:
preprocessed = []
for x in raw_inputs:
preprocessed.append(x)
return [{"x": preprocessed[0]}]
elif self.model_type == ModelTypeEnum.lpr_classify:
processed = []
for img in raw_inputs:
processed.append({"x": img})
return processed
elif self.model_type == ModelTypeEnum.lpr_recognize:
processed = []
for img in raw_inputs:
processed.append({"x": img})
return processed
else: else:
raise ValueError(f"Unable to preprocess inputs for {self.model_type}") raise ValueError(f"Unable to preprocess inputs for {self.model_type}")
def _process_image(self, image): def _process_image(self, image, output: str = "RGB") -> Image.Image:
if isinstance(image, str): if isinstance(image, str):
if image.startswith("http"): if image.startswith("http"):
response = requests.get(image) response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert("RGB") image = Image.open(BytesIO(response.content)).convert(output)
elif isinstance(image, bytes): elif isinstance(image, bytes):
image = Image.open(BytesIO(image)).convert("RGB") image = Image.open(BytesIO(image)).convert(output)
return image return image
def __call__( def __call__(
self, inputs: Union[List[str], List[Image.Image], List[str]] self, inputs: Union[List[str], List[Image.Image], List[str]]
) -> List[np.ndarray]: ) -> List[np.ndarray]:
self._load_model_and_tokenizer() self._load_model_and_utils()
if self.runner is None or ( if self.runner is None or (
self.tokenizer is None and self.feature_extractor is None self.tokenizer is None and self.feature_extractor is None
): ):

View File

@ -0,0 +1,808 @@
import logging
import math
from typing import List, Tuple
import cv2
import numpy as np
from pyclipper import ET_CLOSEDPOLYGON, JT_ROUND, PyclipperOffset
from shapely.geometry import Polygon
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config.semantic_search import LicensePlateRecognitionConfig
from frigate.embeddings.embeddings import Embeddings
logger = logging.getLogger(__name__)
MIN_PLATE_LENGTH = 3
class LicensePlateRecognition:
def __init__(
self,
config: LicensePlateRecognitionConfig,
requestor: InterProcessRequestor,
embeddings: Embeddings,
):
self.lpr_config = config
self.requestor = requestor
self.embeddings = embeddings
self.detection_model = self.embeddings.lpr_detection_model
self.classification_model = self.embeddings.lpr_classification_model
self.recognition_model = self.embeddings.lpr_recognition_model
self.ctc_decoder = CTCDecoder()
self.batch_size = 6
# Detection specific parameters
self.min_size = 3
self.max_size = 960
self.box_thresh = 0.8
self.mask_thresh = 0.8
if self.lpr_config.enabled:
# all models need to be loaded to run LPR
self.detection_model._load_model_and_utils()
self.classification_model._load_model_and_utils()
self.recognition_model._load_model_and_utils()
def detect(self, image: np.ndarray) -> List[np.ndarray]:
"""
Detect possible license plates in the input image by first resizing and normalizing it,
running a detection model, and filtering out low-probability regions.
Args:
image (np.ndarray): The input image in which license plates will be detected.
Returns:
List[np.ndarray]: A list of bounding box coordinates representing detected license plates.
"""
h, w = image.shape[:2]
if sum([h, w]) < 64:
image = self.zero_pad(image)
resized_image = self.resize_image(image)
normalized_image = self.normalize_image(resized_image)
outputs = self.detection_model([normalized_image])[0]
outputs = outputs[0, :, :]
boxes, _ = self.boxes_from_bitmap(outputs, outputs > self.mask_thresh, w, h)
return self.filter_polygon(boxes, (h, w))
def classify(
self, images: List[np.ndarray]
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
"""
Classify the orientation or category of each detected license plate.
Args:
images (List[np.ndarray]): A list of images of detected license plates.
Returns:
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of rotated/normalized plate images
and classification results with confidence scores.
"""
num_images = len(images)
indices = np.argsort([x.shape[1] / x.shape[0] for x in images])
for i in range(0, num_images, self.batch_size):
norm_images = []
for j in range(i, min(num_images, i + self.batch_size)):
norm_img = self._preprocess_classification_image(images[indices[j]])
norm_img = norm_img[np.newaxis, :]
norm_images.append(norm_img)
outputs = self.classification_model(norm_images)
return self._process_classification_output(images, outputs)
def recognize(
self, images: List[np.ndarray]
) -> Tuple[List[str], List[List[float]]]:
"""
Recognize the characters on the detected license plates using the recognition model.
Args:
images (List[np.ndarray]): A list of images of license plates to recognize.
Returns:
Tuple[List[str], List[List[float]]]: A tuple of recognized license plate texts and confidence scores.
"""
input_shape = [3, 48, 320]
num_images = len(images)
# sort images by aspect ratio for processing
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
for index in range(0, num_images, self.batch_size):
input_h, input_w = input_shape[1], input_shape[2]
max_wh_ratio = input_w / input_h
norm_images = []
# calculate the maximum aspect ratio in the current batch
for i in range(index, min(num_images, index + self.batch_size)):
h, w = images[indices[i]].shape[0:2]
max_wh_ratio = max(max_wh_ratio, w * 1.0 / h)
# preprocess the images based on the max aspect ratio
for i in range(index, min(num_images, index + self.batch_size)):
norm_image = self._preprocess_recognition_image(
images[indices[i]], max_wh_ratio
)
norm_image = norm_image[np.newaxis, :]
norm_images.append(norm_image)
outputs = self.recognition_model(norm_images)
return self.ctc_decoder(outputs)
def process_license_plate(
self, image: np.ndarray
) -> Tuple[List[str], List[float], List[int]]:
"""
Complete pipeline for detecting, classifying, and recognizing license plates in the input image.
Args:
image (np.ndarray): The input image in which to detect, classify, and recognize license plates.
Returns:
Tuple[List[str], List[float], List[int]]: Detected license plate texts, confidence scores, and areas of the plates.
"""
if (
self.detection_model.runner is None
or self.classification_model.runner is None
or self.recognition_model.runner is None
):
# we might still be downloading the models
logger.debug("Model runners not loaded")
return [], [], []
plate_points = self.detect(image)
if len(plate_points) == 0:
return [], [], []
plate_points = self.sort_polygon(list(plate_points))
plate_images = [self._crop_license_plate(image, x) for x in plate_points]
rotated_images, _ = self.classify(plate_images)
# keep track of the index of each image for correct area calc later
sorted_indices = np.argsort([x.shape[1] / x.shape[0] for x in rotated_images])
reverse_mapping = {
idx: original_idx for original_idx, idx in enumerate(sorted_indices)
}
results, confidences = self.recognize(rotated_images)
if results:
license_plates = [""] * len(rotated_images)
average_confidences = [[0.0]] * len(rotated_images)
areas = [0] * len(rotated_images)
# map results back to original image order
for i, (plate, conf) in enumerate(zip(results, confidences)):
original_idx = reverse_mapping[i]
height, width = rotated_images[original_idx].shape[:2]
area = height * width
average_confidence = conf
# set to True to write each cropped image for debugging
if False:
save_image = cv2.cvtColor(
rotated_images[original_idx], cv2.COLOR_RGB2BGR
)
filename = f"/config/plate_{original_idx}_{plate}_{area}.jpg"
cv2.imwrite(filename, save_image)
license_plates[original_idx] = plate
average_confidences[original_idx] = average_confidence
areas[original_idx] = area
# Filter out plates that have a length of less than 3 characters
# Sort by area, then by plate length, then by confidence all desc
sorted_data = sorted(
[
(plate, conf, area)
for plate, conf, area in zip(
license_plates, average_confidences, areas
)
if len(plate) >= MIN_PLATE_LENGTH
],
key=lambda x: (x[2], len(x[0]), x[1]),
reverse=True,
)
if sorted_data:
return map(list, zip(*sorted_data))
return [], [], []
def resize_image(self, image: np.ndarray) -> np.ndarray:
"""
Resize the input image while maintaining the aspect ratio, ensuring dimensions are multiples of 32.
Args:
image (np.ndarray): The input image to resize.
Returns:
np.ndarray: The resized image.
"""
h, w = image.shape[:2]
ratio = min(self.max_size / max(h, w), 1.0)
resize_h = max(int(round(int(h * ratio) / 32) * 32), 32)
resize_w = max(int(round(int(w * ratio) / 32) * 32), 32)
return cv2.resize(image, (resize_w, resize_h))
def normalize_image(self, image: np.ndarray) -> np.ndarray:
"""
Normalize the input image by subtracting the mean and multiplying by the standard deviation.
Args:
image (np.ndarray): The input image to normalize.
Returns:
np.ndarray: The normalized image, transposed to match the model's expected input format.
"""
mean = np.array([123.675, 116.28, 103.53]).reshape(1, -1).astype("float64")
std = 1 / np.array([58.395, 57.12, 57.375]).reshape(1, -1).astype("float64")
image = image.astype("float32")
cv2.subtract(image, mean, image)
cv2.multiply(image, std, image)
return image.transpose((2, 0, 1))[np.newaxis, ...]
def boxes_from_bitmap(
self, output: np.ndarray, mask: np.ndarray, dest_width: int, dest_height: int
) -> Tuple[np.ndarray, List[float]]:
"""
Process the binary mask to extract bounding boxes and associated confidence scores.
Args:
output (np.ndarray): Output confidence map from the model.
mask (np.ndarray): Binary mask of detected regions.
dest_width (int): Target width for scaling the box coordinates.
dest_height (int): Target height for scaling the box coordinates.
Returns:
Tuple[np.ndarray, List[float]]: Array of bounding boxes and list of corresponding scores.
"""
mask = (mask * 255).astype(np.uint8)
height, width = mask.shape
outs = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# handle different return values of findContours between OpenCV versions
contours = outs[0] if len(outs) == 2 else outs[1]
boxes = []
scores = []
for index in range(len(contours)):
contour = contours[index]
# get minimum bounding box (rotated rectangle) around the contour and the smallest side length.
points, min_side = self.get_min_boxes(contour)
if min_side < self.min_size:
continue
points = np.array(points)
score = self.box_score(output, contour)
if self.box_thresh > score:
continue
polygon = Polygon(points)
distance = polygon.area / polygon.length
# Use pyclipper to shrink the polygon slightly based on the computed distance.
offset = PyclipperOffset()
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
points = np.array(offset.Execute(distance * 1.5)).reshape((-1, 1, 2))
# get the minimum bounding box around the shrunken polygon.
box, min_side = self.get_min_boxes(points)
if min_side < self.min_size + 2:
continue
box = np.array(box)
# normalize and clip box coordinates to fit within the destination image size.
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height
)
boxes.append(box.astype("int32"))
scores.append(score)
return np.array(boxes, dtype="int32"), scores
@staticmethod
def get_min_boxes(contour: np.ndarray) -> Tuple[List[Tuple[float, float]], float]:
"""
Calculate the minimum bounding box (rotated rectangle) for a given contour.
Args:
contour (np.ndarray): The contour points of the detected shape.
Returns:
Tuple[List[Tuple[float, float]], float]: A list of four points representing the
corners of the bounding box, and the length of the shortest side.
"""
bounding_box = cv2.minAreaRect(contour)
points = sorted(cv2.boxPoints(bounding_box), key=lambda x: x[0])
index_1, index_4 = (0, 1) if points[1][1] > points[0][1] else (1, 0)
index_2, index_3 = (2, 3) if points[3][1] > points[2][1] else (3, 2)
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
@staticmethod
def box_score(bitmap: np.ndarray, contour: np.ndarray) -> float:
"""
Calculate the average score within the bounding box of a contour.
Args:
bitmap (np.ndarray): The output confidence map from the model.
contour (np.ndarray): The contour of the detected shape.
Returns:
float: The average score of the pixels inside the contour region.
"""
h, w = bitmap.shape[:2]
contour = contour.reshape(-1, 2)
x1, y1 = np.clip(contour.min(axis=0), 0, [w - 1, h - 1])
x2, y2 = np.clip(contour.max(axis=0), 0, [w - 1, h - 1])
mask = np.zeros((y2 - y1 + 1, x2 - x1 + 1), dtype=np.uint8)
cv2.fillPoly(mask, [contour - [x1, y1]], 1)
return cv2.mean(bitmap[y1 : y2 + 1, x1 : x2 + 1], mask)[0]
@staticmethod
def expand_box(points: List[Tuple[float, float]]) -> np.ndarray:
"""
Expand a polygonal shape slightly by a factor determined by the area-to-perimeter ratio.
Args:
points (List[Tuple[float, float]]): Points of the polygon to expand.
Returns:
np.ndarray: Expanded polygon points.
"""
polygon = Polygon(points)
distance = polygon.area / polygon.length
offset = PyclipperOffset()
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance * 1.5)).reshape((-1, 2))
return expanded
def filter_polygon(
self, points: List[np.ndarray], shape: Tuple[int, int]
) -> np.ndarray:
"""
Filter a set of polygons to include only valid ones that fit within an image shape
and meet size constraints.
Args:
points (List[np.ndarray]): List of polygons to filter.
shape (Tuple[int, int]): Shape of the image (height, width).
Returns:
np.ndarray: List of filtered polygons.
"""
height, width = shape
return np.array(
[
self.clockwise_order(point)
for point in points
if self.is_valid_polygon(point, width, height)
]
)
@staticmethod
def is_valid_polygon(point: np.ndarray, width: int, height: int) -> bool:
"""
Check if a polygon is valid, meaning it fits within the image bounds
and has sides of a minimum length.
Args:
point (np.ndarray): The polygon to validate.
width (int): Image width.
height (int): Image height.
Returns:
bool: Whether the polygon is valid or not.
"""
return (
point[:, 0].min() >= 0
and point[:, 0].max() < width
and point[:, 1].min() >= 0
and point[:, 1].max() < height
and np.linalg.norm(point[0] - point[1]) > 3
and np.linalg.norm(point[0] - point[3]) > 3
)
@staticmethod
def clockwise_order(point: np.ndarray) -> np.ndarray:
"""
Arrange the points of a polygon in clockwise order based on their angular positions
around the polygon's center.
Args:
point (np.ndarray): Array of points of the polygon.
Returns:
np.ndarray: Points ordered in clockwise direction.
"""
center = point.mean(axis=0)
return point[
np.argsort(np.arctan2(point[:, 1] - center[1], point[:, 0] - center[0]))
]
@staticmethod
def sort_polygon(points):
"""
Sort polygons based on their position in the image. If polygons are close in vertical
position (within 10 pixels), sort them by horizontal position.
Args:
points: List of polygons to sort.
Returns:
List: Sorted list of polygons.
"""
points.sort(key=lambda x: (x[0][1], x[0][0]))
for i in range(len(points) - 1):
for j in range(i, -1, -1):
if abs(points[j + 1][0][1] - points[j][0][1]) < 10 and (
points[j + 1][0][0] < points[j][0][0]
):
temp = points[j]
points[j] = points[j + 1]
points[j + 1] = temp
else:
break
return points
@staticmethod
def zero_pad(image: np.ndarray) -> np.ndarray:
"""
Apply zero-padding to an image, ensuring its dimensions are at least 32x32.
The padding is added only if needed.
Args:
image (np.ndarray): Input image.
Returns:
np.ndarray: Zero-padded image.
"""
h, w, c = image.shape
pad = np.zeros((max(32, h), max(32, w), c), np.uint8)
pad[:h, :w, :] = image
return pad
@staticmethod
def _preprocess_classification_image(image: np.ndarray) -> np.ndarray:
"""
Preprocess a single image for classification by resizing, normalizing, and padding.
This method resizes the input image to a fixed height of 48 pixels while adjusting
the width dynamically up to a maximum of 192 pixels. The image is then normalized and
padded to fit the required input dimensions for classification.
Args:
image (np.ndarray): Input image to preprocess.
Returns:
np.ndarray: Preprocessed and padded image.
"""
# fixed height of 48, dynamic width up to 192
input_shape = (3, 48, 192)
input_c, input_h, input_w = input_shape
h, w = image.shape[:2]
ratio = w / h
resized_w = min(input_w, math.ceil(input_h * ratio))
resized_image = cv2.resize(image, (resized_w, input_h))
# handle single-channel images (grayscale) if needed
if input_c == 1 and resized_image.ndim == 2:
resized_image = resized_image[np.newaxis, :, :]
else:
resized_image = resized_image.transpose((2, 0, 1))
# normalize
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
padded_image = np.zeros((input_c, input_h, input_w), dtype=np.float32)
padded_image[:, :, :resized_w] = resized_image
return padded_image
def _process_classification_output(
self, images: List[np.ndarray], outputs: List[np.ndarray]
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
"""
Process the classification model output by matching labels with confidence scores.
This method processes the outputs from the classification model and rotates images
with high confidence of being labeled "180". It ensures that results are mapped to
the original image order.
Args:
images (List[np.ndarray]): List of input images.
outputs (List[np.ndarray]): Corresponding model outputs.
Returns:
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of processed images and
classification results (label and confidence score).
"""
labels = ["0", "180"]
results = [["", 0.0]] * len(images)
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
outputs = np.stack(outputs)
outputs = [
(labels[idx], outputs[i, idx])
for i, idx in enumerate(outputs.argmax(axis=1))
]
for i in range(0, len(images), self.batch_size):
for j in range(len(outputs)):
label, score = outputs[j]
results[indices[i + j]] = [label, score]
if "180" in label and score >= self.lpr_config.threshold:
images[indices[i + j]] = cv2.rotate(images[indices[i + j]], 1)
return images, results
def _preprocess_recognition_image(
self, image: np.ndarray, max_wh_ratio: float
) -> np.ndarray:
"""
Preprocess an image for recognition by dynamically adjusting its width.
This method adjusts the width of the image based on the maximum width-to-height ratio
while keeping the height fixed at 48 pixels. The image is then normalized and padded
to fit the required input dimensions for recognition.
Args:
image (np.ndarray): Input image to preprocess.
max_wh_ratio (float): Maximum width-to-height ratio for resizing.
Returns:
np.ndarray: Preprocessed and padded image.
"""
# fixed height of 48, dynamic width based on ratio
input_shape = [3, 48, 320]
input_h, input_w = input_shape[1], input_shape[2]
assert image.shape[2] == input_shape[0], "Unexpected number of image channels."
# dynamically adjust input width based on max_wh_ratio
input_w = int(input_h * max_wh_ratio)
# check for model-specific input width
model_input_w = self.recognition_model.runner.ort.get_inputs()[0].shape[3]
if isinstance(model_input_w, int) and model_input_w > 0:
input_w = model_input_w
h, w = image.shape[:2]
aspect_ratio = w / h
resized_w = min(input_w, math.ceil(input_h * aspect_ratio))
resized_image = cv2.resize(image, (resized_w, input_h))
resized_image = resized_image.transpose((2, 0, 1))
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
padded_image = np.zeros((input_shape[0], input_h, input_w), dtype=np.float32)
padded_image[:, :, :resized_w] = resized_image
return padded_image
@staticmethod
def _crop_license_plate(image: np.ndarray, points: np.ndarray) -> np.ndarray:
"""
Crop the license plate from the image using four corner points.
This method crops the region containing the license plate by using the perspective
transformation based on four corner points. If the resulting image is significantly
taller than wide, the image is rotated to the correct orientation.
Args:
image (np.ndarray): Input image containing the license plate.
points (np.ndarray): Four corner points defining the plate's position.
Returns:
np.ndarray: Cropped and potentially rotated license plate image.
"""
assert len(points) == 4, "shape of points must be 4*2"
points = points.astype(np.float32)
crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3]),
)
)
crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2]),
)
)
pts_std = np.float32(
[[0, 0], [crop_width, 0], [crop_width, crop_height], [0, crop_height]]
)
matrix = cv2.getPerspectiveTransform(points, pts_std)
image = cv2.warpPerspective(
image,
matrix,
(crop_width, crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
)
height, width = image.shape[0:2]
if height * 1.0 / width >= 1.5:
image = np.rot90(image, k=3)
return image
class CTCDecoder:
"""
A decoder for interpreting the output of a CTC (Connectionist Temporal Classification) model.
This decoder converts the model's output probabilities into readable sequences of characters
while removing duplicates and handling blank tokens. It also calculates the confidence scores
for each decoded character sequence.
"""
def __init__(self):
"""
Initialize the CTCDecoder with a list of characters and a character map.
The character set includes digits, letters, special characters, and a "blank" token
(used by the CTC model for decoding purposes). A character map is created to map
indices to characters.
"""
self.characters = [
"blank",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
":",
";",
"<",
"=",
">",
"?",
"@",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
"N",
"O",
"P",
"Q",
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",
"[",
"\\",
"]",
"^",
"_",
"`",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"{",
"|",
"}",
"~",
"!",
'"',
"#",
"$",
"%",
"&",
"'",
"(",
")",
"*",
"+",
",",
"-",
".",
"/",
" ",
" ",
]
self.char_map = {i: char for i, char in enumerate(self.characters)}
def __call__(
self, outputs: List[np.ndarray]
) -> Tuple[List[str], List[List[float]]]:
"""
Decode a batch of model outputs into character sequences and their confidence scores.
The method takes the output probability distributions for each time step and uses
the best path decoding strategy. It then merges repeating characters and ignores
blank tokens. Confidence scores for each decoded character are also calculated.
Args:
outputs (List[np.ndarray]): A list of model outputs, where each element is
a probability distribution for each time step.
Returns:
Tuple[List[str], List[List[float]]]: A tuple of decoded character sequences
and confidence scores for each sequence.
"""
results = []
confidences = []
for output in outputs:
seq_log_probs = np.log(output + 1e-8)
best_path = np.argmax(seq_log_probs, axis=1)
merged_path = []
merged_probs = []
for t, char_index in enumerate(best_path):
if char_index != 0 and (t == 0 or char_index != best_path[t - 1]):
merged_path.append(char_index)
merged_probs.append(seq_log_probs[t, char_index])
result = "".join(self.char_map[idx] for idx in merged_path)
results.append(result)
confidence = np.exp(merged_probs).tolist()
confidences.append(confidence)
return results, confidences

View File

@ -3,6 +3,9 @@
import base64 import base64
import logging import logging
import os import os
import random
import re
import string
import threading import threading
from multiprocessing.synchronize import Event as MpEvent from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path from pathlib import Path
@ -10,6 +13,7 @@ from typing import Optional
import cv2 import cv2
import numpy as np import numpy as np
import requests
from peewee import DoesNotExist from peewee import DoesNotExist
from playhouse.sqliteq import SqliteQueueDatabase from playhouse.sqliteq import SqliteQueueDatabase
@ -21,13 +25,20 @@ from frigate.comms.event_metadata_updater import (
from frigate.comms.events_updater import EventEndSubscriber, EventUpdateSubscriber from frigate.comms.events_updater import EventEndSubscriber, EventUpdateSubscriber
from frigate.comms.inter_process import InterProcessRequestor from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import FrigateConfig from frigate.config import FrigateConfig
from frigate.const import CLIPS_DIR, UPDATE_EVENT_DESCRIPTION from frigate.const import (
CLIPS_DIR,
FACE_DIR,
FRIGATE_LOCALHOST,
UPDATE_EVENT_DESCRIPTION,
)
from frigate.embeddings.lpr.lpr import LicensePlateRecognition
from frigate.events.types import EventTypeEnum from frigate.events.types import EventTypeEnum
from frigate.genai import get_genai_client from frigate.genai import get_genai_client
from frigate.models import Event from frigate.models import Event
from frigate.types import TrackedObjectUpdateTypesEnum from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import serialize from frigate.util.builtin import serialize
from frigate.util.image import SharedMemoryFrameManager, calculate_region from frigate.util.image import SharedMemoryFrameManager, area, calculate_region
from frigate.util.model import FaceClassificationModel
from .embeddings import Embeddings from .embeddings import Embeddings
@ -47,7 +58,7 @@ class EmbeddingMaintainer(threading.Thread):
) -> None: ) -> None:
super().__init__(name="embeddings_maintainer") super().__init__(name="embeddings_maintainer")
self.config = config self.config = config
self.embeddings = Embeddings(config.semantic_search, db) self.embeddings = Embeddings(config, db)
# Check if we need to re-index events # Check if we need to re-index events
if config.semantic_search.reindex: if config.semantic_search.reindex:
@ -60,12 +71,48 @@ class EmbeddingMaintainer(threading.Thread):
) )
self.embeddings_responder = EmbeddingsResponder() self.embeddings_responder = EmbeddingsResponder()
self.frame_manager = SharedMemoryFrameManager() self.frame_manager = SharedMemoryFrameManager()
# set face recognition conditions
self.face_recognition_enabled = self.config.face_recognition.enabled
self.requires_face_detection = "face" not in self.config.objects.all_objects
self.detected_faces: dict[str, float] = {}
self.face_classifier = (
FaceClassificationModel(self.config.face_recognition, db)
if self.face_recognition_enabled
else None
)
# create communication for updating event descriptions # create communication for updating event descriptions
self.requestor = InterProcessRequestor() self.requestor = InterProcessRequestor()
self.stop_event = stop_event self.stop_event = stop_event
self.tracked_events = {} self.tracked_events: dict[str, list[any]] = {}
self.genai_client = get_genai_client(config) self.genai_client = get_genai_client(config)
# set license plate recognition conditions
self.lpr_config = self.config.lpr
self.requires_license_plate_detection = (
"license_plate" not in self.config.objects.all_objects
)
self.detected_license_plates: dict[str, dict[str, any]] = {}
if self.lpr_config.enabled:
self.license_plate_recognition = LicensePlateRecognition(
self.lpr_config, self.requestor, self.embeddings
)
@property
def face_detector(self) -> cv2.FaceDetectorYN:
# Lazily create the classifier.
if "face_detector" not in self.__dict__:
self.__dict__["face_detector"] = cv2.FaceDetectorYN.create(
"/config/model_cache/facedet/facedet.onnx",
config="",
input_size=(320, 320),
score_threshold=0.8,
nms_threshold=0.3,
)
return self.__dict__["face_detector"]
def run(self) -> None: def run(self) -> None:
"""Maintain a SQLite-vec database for semantic search.""" """Maintain a SQLite-vec database for semantic search."""
while not self.stop_event.is_set(): while not self.stop_event.is_set():
@ -84,7 +131,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_requests(self) -> None: def _process_requests(self) -> None:
"""Process embeddings requests""" """Process embeddings requests"""
def _handle_request(topic: str, data: str) -> str: def _handle_request(topic: str, data: dict[str, any]) -> str:
try: try:
if topic == EmbeddingsRequestEnum.embed_description.value: if topic == EmbeddingsRequestEnum.embed_description.value:
return serialize( return serialize(
@ -103,6 +150,46 @@ class EmbeddingMaintainer(threading.Thread):
return serialize( return serialize(
self.embeddings.text_embedding([data])[0], pack=False self.embeddings.text_embedding([data])[0], pack=False
) )
elif topic == EmbeddingsRequestEnum.register_face.value:
if not self.face_recognition_enabled:
return False
rand_id = "".join(
random.choices(string.ascii_lowercase + string.digits, k=6)
)
label = data["face_name"]
id = f"{label}-{rand_id}"
if data.get("cropped"):
pass
else:
img = cv2.imdecode(
np.frombuffer(
base64.b64decode(data["image"]), dtype=np.uint8
),
cv2.IMREAD_COLOR,
)
face_box = self._detect_face(img)
if not face_box:
return False
face = img[face_box[1] : face_box[3], face_box[0] : face_box[2]]
ret, thumbnail = cv2.imencode(
".webp", face, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
)
# write face to library
folder = os.path.join(FACE_DIR, label)
file = os.path.join(folder, f"{id}.webp")
os.makedirs(folder, exist_ok=True)
# save face image
with open(file, "wb") as output:
output.write(thumbnail.tobytes())
self.face_classifier.clear_classifier()
return True
except Exception as e: except Exception as e:
logger.error(f"Unable to handle embeddings request {e}") logger.error(f"Unable to handle embeddings request {e}")
@ -110,7 +197,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_updates(self) -> None: def _process_updates(self) -> None:
"""Process event updates""" """Process event updates"""
update = self.event_subscriber.check_for_update(timeout=0.1) update = self.event_subscriber.check_for_update(timeout=0.01)
if update is None: if update is None:
return return
@ -121,42 +208,56 @@ class EmbeddingMaintainer(threading.Thread):
return return
camera_config = self.config.cameras[camera] camera_config = self.config.cameras[camera]
# no need to save our own thumbnails if genai is not enabled
# or if the object has become stationary # no need to process updated objects if face recognition, lpr, genai are disabled
if ( if (
not camera_config.genai.enabled not camera_config.genai.enabled
or self.genai_client is None and not self.face_recognition_enabled
or data["stationary"] and not self.lpr_config.enabled
): ):
return return
if data["id"] not in self.tracked_events:
self.tracked_events[data["id"]] = []
# Create our own thumbnail based on the bounding box and the frame time # Create our own thumbnail based on the bounding box and the frame time
try: try:
yuv_frame = self.frame_manager.get( yuv_frame = self.frame_manager.get(
frame_name, camera_config.frame_shape_yuv frame_name, camera_config.frame_shape_yuv
) )
if yuv_frame is not None:
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
# Limit the number of thumbnails saved
if len(self.tracked_events[data["id"]]) >= MAX_THUMBNAILS:
# Always keep the first thumbnail for the event
self.tracked_events[data["id"]].pop(1)
self.tracked_events[data["id"]].append(data)
self.frame_manager.close(frame_name)
except FileNotFoundError: except FileNotFoundError:
pass pass
if yuv_frame is None:
logger.debug(
"Unable to process object update because frame is unavailable."
)
return
if self.face_recognition_enabled:
self._process_face(data, yuv_frame)
if self.lpr_config.enabled:
self._process_license_plate(data, yuv_frame)
# no need to save our own thumbnails if genai is not enabled
# or if the object has become stationary
if self.genai_client is not None and not data["stationary"]:
if data["id"] not in self.tracked_events:
self.tracked_events[data["id"]] = []
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
# Limit the number of thumbnails saved
if len(self.tracked_events[data["id"]]) >= MAX_THUMBNAILS:
# Always keep the first thumbnail for the event
self.tracked_events[data["id"]].pop(1)
self.tracked_events[data["id"]].append(data)
self.frame_manager.close(frame_name)
def _process_finalized(self) -> None: def _process_finalized(self) -> None:
"""Process the end of an event.""" """Process the end of an event."""
while True: while True:
ended = self.event_end_subscriber.check_for_update(timeout=0.1) ended = self.event_end_subscriber.check_for_update(timeout=0.01)
if ended == None: if ended == None:
break break
@ -164,6 +265,12 @@ class EmbeddingMaintainer(threading.Thread):
event_id, camera, updated_db = ended event_id, camera, updated_db = ended
camera_config = self.config.cameras[camera] camera_config = self.config.cameras[camera]
if event_id in self.detected_faces:
self.detected_faces.pop(event_id)
if event_id in self.detected_license_plates:
self.detected_license_plates.pop(event_id)
if updated_db: if updated_db:
try: try:
event: Event = Event.get(Event.id == event_id) event: Event = Event.get(Event.id == event_id)
@ -277,7 +384,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_event_metadata(self): def _process_event_metadata(self):
# Check for regenerate description requests # Check for regenerate description requests
(topic, event_id, source) = self.event_metadata_subscriber.check_for_update( (topic, event_id, source) = self.event_metadata_subscriber.check_for_update(
timeout=0.1 timeout=0.01
) )
if topic is None: if topic is None:
@ -286,6 +393,350 @@ class EmbeddingMaintainer(threading.Thread):
if event_id: if event_id:
self.handle_regenerate_description(event_id, source) self.handle_regenerate_description(event_id, source)
def _detect_face(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Detect faces in input image."""
self.face_detector.setInputSize((input.shape[1], input.shape[0]))
faces = self.face_detector.detect(input)
if faces[1] is None:
return None
face = None
for _, potential_face in enumerate(faces[1]):
raw_bbox = potential_face[0:4].astype(np.uint16)
x: int = max(raw_bbox[0], 0)
y: int = max(raw_bbox[1], 0)
w: int = raw_bbox[2]
h: int = raw_bbox[3]
bbox = (x, y, x + w, y + h)
if face is None or area(bbox) > area(face):
face = bbox
return face
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
"""Look for faces in image."""
id = obj_data["id"]
# don't run for non person objects
if obj_data.get("label") != "person":
logger.debug("Not a processing face for non person object.")
return
# don't overwrite sub label for objects that have a sub label
# that is not a face
if obj_data.get("sub_label") and id not in self.detected_faces:
logger.debug(
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
)
return
face: Optional[dict[str, any]] = None
if self.requires_face_detection:
logger.debug("Running manual face detection.")
person_box = obj_data.get("box")
if not person_box:
return None
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = person_box
person = rgb[top:bottom, left:right]
face_box = self._detect_face(person)
if not face_box:
logger.debug("Detected no faces for person object.")
return
margin = int((face_box[2] - face_box[0]) * 0.25)
face_frame = person[
max(0, face_box[1] - margin) : min(
frame.shape[0], face_box[3] + margin
),
max(0, face_box[0] - margin) : min(
frame.shape[1], face_box[2] + margin
),
]
face_frame = cv2.cvtColor(face_frame, cv2.COLOR_RGB2BGR)
else:
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
if attr.get("label") != "face":
continue
if face is None or attr.get("score", 0.0) > face.get("score", 0.0):
face = attr
# no faces detected in this frame
if not face:
return
face_box = face.get("box")
# check that face is valid
if not face_box or area(face_box) < self.config.face_recognition.min_area:
logger.debug(f"Invalid face box {face}")
return
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
margin = int((face_box[2] - face_box[0]) * 0.25)
face_frame = face_frame[
max(0, face_box[1] - margin) : min(
frame.shape[0], face_box[3] + margin
),
max(0, face_box[0] - margin) : min(
frame.shape[1], face_box[2] + margin
),
]
res = self.face_classifier.classify_face(face_frame)
if not res:
return
sub_label, score = res
# calculate the overall face score as the probability * area of face
# this will help to reduce false positives from small side-angle faces
# if a large front-on face image may have scored slightly lower but
# is more likely to be accurate due to the larger face area
face_score = round(score * face_frame.shape[0] * face_frame.shape[1], 2)
logger.debug(
f"Detected best face for person as: {sub_label} with probability {score} and overall face score {face_score}"
)
if self.config.face_recognition.save_attempts:
# write face to library
folder = os.path.join(FACE_DIR, "train")
file = os.path.join(folder, f"{id}-{sub_label}-{score}-{face_score}.webp")
os.makedirs(folder, exist_ok=True)
cv2.imwrite(file, face_frame)
if score < self.config.face_recognition.threshold:
logger.debug(
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
)
return
if id in self.detected_faces and face_score <= self.detected_faces[id]:
logger.debug(
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
)
return
resp = requests.post(
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
json={
"camera": obj_data.get("camera"),
"subLabel": sub_label,
"subLabelScore": score,
},
)
if resp.status_code == 200:
self.detected_faces[id] = face_score
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Return the dimensions of the input image as [x, y, width, height]."""
height, width = input.shape[:2]
return (0, 0, width, height)
def _process_license_plate(
self, obj_data: dict[str, any], frame: np.ndarray
) -> None:
"""Look for license plates in image."""
id = obj_data["id"]
# don't run for non car objects
if obj_data.get("label") != "car":
logger.debug("Not a processing license plate for non car object.")
return
# don't run for stationary car objects
if obj_data.get("stationary") == True:
logger.debug("Not a processing license plate for a stationary car object.")
return
# don't overwrite sub label for objects that have a sub label
# that is not a license plate
if obj_data.get("sub_label") and id not in self.detected_license_plates:
logger.debug(
f"Not processing license plate due to existing sub label: {obj_data.get('sub_label')}."
)
return
license_plate: Optional[dict[str, any]] = None
if self.requires_license_plate_detection:
logger.debug("Running manual license_plate detection.")
car_box = obj_data.get("box")
if not car_box:
return None
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = car_box
car = rgb[top:bottom, left:right]
license_plate = self._detect_license_plate(car)
if not license_plate:
logger.debug("Detected no license plates for car object.")
return
license_plate_frame = car[
license_plate[1] : license_plate[3], license_plate[0] : license_plate[2]
]
license_plate_frame = cv2.cvtColor(license_plate_frame, cv2.COLOR_RGB2BGR)
else:
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
if attr.get("label") != "license_plate":
continue
if license_plate is None or attr.get("score", 0.0) > license_plate.get(
"score", 0.0
):
license_plate = attr
# no license plates detected in this frame
if not license_plate:
return
license_plate_box = license_plate.get("box")
# check that license plate is valid
if (
not license_plate_box
or area(license_plate_box) < self.config.lpr.min_area
):
logger.debug(f"Invalid license plate box {license_plate}")
return
license_plate_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
license_plate_frame = license_plate_frame[
license_plate_box[1] : license_plate_box[3],
license_plate_box[0] : license_plate_box[2],
]
# run detection, returns results sorted by confidence, best first
license_plates, confidences, areas = (
self.license_plate_recognition.process_license_plate(license_plate_frame)
)
logger.debug(f"Text boxes: {license_plates}")
logger.debug(f"Confidences: {confidences}")
logger.debug(f"Areas: {areas}")
if license_plates:
for plate, confidence, text_area in zip(license_plates, confidences, areas):
avg_confidence = (
(sum(confidence) / len(confidence)) if confidence else 0
)
logger.debug(
f"Detected text: {plate} (average confidence: {avg_confidence:.2f}, area: {text_area} pixels)"
)
else:
# no plates found
logger.debug("No text detected")
return
top_plate, top_char_confidences, top_area = (
license_plates[0],
confidences[0],
areas[0],
)
avg_confidence = (
(sum(top_char_confidences) / len(top_char_confidences))
if top_char_confidences
else 0
)
# Check if we have a previously detected plate for this ID
if id in self.detected_license_plates:
prev_plate = self.detected_license_plates[id]["plate"]
prev_char_confidences = self.detected_license_plates[id]["char_confidences"]
prev_area = self.detected_license_plates[id]["area"]
prev_avg_confidence = (
(sum(prev_char_confidences) / len(prev_char_confidences))
if prev_char_confidences
else 0
)
# Define conditions for keeping the previous plate
shorter_than_previous = len(top_plate) < len(prev_plate)
lower_avg_confidence = avg_confidence <= prev_avg_confidence
smaller_area = top_area < prev_area
# Compare character-by-character confidence where possible
min_length = min(len(top_plate), len(prev_plate))
char_confidence_comparison = sum(
1
for i in range(min_length)
if top_char_confidences[i] <= prev_char_confidences[i]
)
worse_char_confidences = char_confidence_comparison >= min_length / 2
if (shorter_than_previous or smaller_area) and (
lower_avg_confidence and worse_char_confidences
):
logger.debug(
f"Keeping previous plate. New plate stats: "
f"length={len(top_plate)}, avg_conf={avg_confidence:.2f}, area={top_area} "
f"vs Previous: length={len(prev_plate)}, avg_conf={prev_avg_confidence:.2f}, area={prev_area}"
)
return
# Check against minimum confidence threshold
if avg_confidence < self.lpr_config.threshold:
logger.debug(
f"Average confidence {avg_confidence} is less than threshold ({self.lpr_config.threshold})"
)
return
# Determine subLabel based on known plates, use regex matching
# Default to the detected plate, use label name if there's a match
sub_label = next(
(
label
for label, plates in self.lpr_config.known_plates.items()
if any(re.match(f"^{plate}$", top_plate) for plate in plates)
),
top_plate,
)
# Send the result to the API
resp = requests.post(
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
json={
"camera": obj_data.get("camera"),
"subLabel": sub_label,
"subLabelScore": avg_confidence,
},
)
if resp.status_code == 200:
self.detected_license_plates[id] = {
"plate": top_plate,
"char_confidences": top_char_confidences,
"area": top_area,
}
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]: def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]:
"""Return jpg thumbnail of a region of the frame.""" """Return jpg thumbnail of a region of the frame."""
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420) frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420)

View File

@ -6,6 +6,7 @@ from enum import Enum
from typing import Any from typing import Any
from frigate.const import ( from frigate.const import (
FFMPEG_HVC1_ARGS,
FFMPEG_HWACCEL_NVIDIA, FFMPEG_HWACCEL_NVIDIA,
FFMPEG_HWACCEL_VAAPI, FFMPEG_HWACCEL_VAAPI,
FFMPEG_HWACCEL_VULKAN, FFMPEG_HWACCEL_VULKAN,
@ -497,6 +498,6 @@ def parse_preset_output_record(arg: Any, force_record_hvc1: bool) -> list[str]:
if force_record_hvc1: if force_record_hvc1:
# Apple only supports HEVC if it is hvc1 (vs. hev1) # Apple only supports HEVC if it is hvc1 (vs. hev1)
preset += ["-tag:v", "hvc1"] preset += FFMPEG_HVC1_ARGS
return preset return preset

View File

@ -18,12 +18,19 @@ LOG_HANDLER.setFormatter(
) )
) )
# filter out norfair warning
LOG_HANDLER.addFilter( LOG_HANDLER.addFilter(
lambda record: not record.getMessage().startswith( lambda record: not record.getMessage().startswith(
"You are using a scalar distance function" "You are using a scalar distance function"
) )
) )
# filter out tflite logging
LOG_HANDLER.addFilter(
lambda record: "Created TensorFlow Lite XNNPACK delegate for CPU."
not in record.getMessage()
)
log_listener: Optional[QueueListener] = None log_listener: Optional[QueueListener] = None

View File

@ -19,6 +19,7 @@ from frigate.const import (
CACHE_DIR, CACHE_DIR,
CLIPS_DIR, CLIPS_DIR,
EXPORT_DIR, EXPORT_DIR,
FFMPEG_HVC1_ARGS,
MAX_PLAYLIST_SECONDS, MAX_PLAYLIST_SECONDS,
PREVIEW_FRAME_TYPE, PREVIEW_FRAME_TYPE,
) )
@ -219,7 +220,7 @@ class RecordingExporter(threading.Thread):
if self.playback_factor == PlaybackFactorEnum.realtime: if self.playback_factor == PlaybackFactorEnum.realtime:
ffmpeg_cmd = ( ffmpeg_cmd = (
f"{self.config.ffmpeg.ffmpeg_path} -hide_banner {ffmpeg_input} -c copy -movflags +faststart {video_path}" f"{self.config.ffmpeg.ffmpeg_path} -hide_banner {ffmpeg_input} -c copy -movflags +faststart"
).split(" ") ).split(" ")
elif self.playback_factor == PlaybackFactorEnum.timelapse_25x: elif self.playback_factor == PlaybackFactorEnum.timelapse_25x:
ffmpeg_cmd = ( ffmpeg_cmd = (
@ -227,11 +228,16 @@ class RecordingExporter(threading.Thread):
self.config.ffmpeg.ffmpeg_path, self.config.ffmpeg.ffmpeg_path,
self.config.ffmpeg.hwaccel_args, self.config.ffmpeg.hwaccel_args,
f"-an {ffmpeg_input}", f"-an {ffmpeg_input}",
f"{self.config.cameras[self.camera].record.export.timelapse_args} -movflags +faststart {video_path}", f"{self.config.cameras[self.camera].record.export.timelapse_args} -movflags +faststart",
EncodeTypeEnum.timelapse, EncodeTypeEnum.timelapse,
) )
).split(" ") ).split(" ")
if self.config.ffmpeg.apple_compatibility:
ffmpeg_cmd += FFMPEG_HVC1_ARGS
ffmpeg_cmd.append(video_path)
return ffmpeg_cmd, playlist_lines return ffmpeg_cmd, playlist_lines
def get_preview_export_command(self, video_path: str) -> list[str]: def get_preview_export_command(self, video_path: str) -> list[str]:

View File

@ -195,7 +195,7 @@ async def set_gpu_stats(
continue continue
# intel QSV GPU # intel QSV GPU
intel_usage = get_intel_gpu_stats() intel_usage = get_intel_gpu_stats(config.telemetry.stats.sriov)
if intel_usage is not None: if intel_usage is not None:
stats["intel-qsv"] = intel_usage or {"gpu": "", "mem": ""} stats["intel-qsv"] = intel_usage or {"gpu": "", "mem": ""}
@ -220,7 +220,7 @@ async def set_gpu_stats(
continue continue
# intel VAAPI GPU # intel VAAPI GPU
intel_usage = get_intel_gpu_stats() intel_usage = get_intel_gpu_stats(config.telemetry.stats.sriov)
if intel_usage is not None: if intel_usage is not None:
stats["intel-vaapi"] = intel_usage or {"gpu": "", "mem": ""} stats["intel-vaapi"] = intel_usage or {"gpu": "", "mem": ""}

View File

@ -38,7 +38,7 @@ class TestGpuStats(unittest.TestCase):
process.returncode = 124 process.returncode = 124
process.stdout = self.intel_results process.stdout = self.intel_results
sp.return_value = process sp.return_value = process
intel_stats = get_intel_gpu_stats() intel_stats = get_intel_gpu_stats(False)
print(f"the intel stats are {intel_stats}") print(f"the intel stats are {intel_stats}")
assert intel_stats == { assert intel_stats == {
"gpu": "1.13%", "gpu": "1.13%",

View File

@ -101,7 +101,7 @@ class ModelDownloader:
self.download_complete.set() self.download_complete.set()
@staticmethod @staticmethod
def download_from_url(url: str, save_path: str, silent: bool = False): def download_from_url(url: str, save_path: str, silent: bool = False) -> Path:
temporary_filename = Path(save_path).with_name( temporary_filename = Path(save_path).with_name(
os.path.basename(save_path) + ".part" os.path.basename(save_path) + ".part"
) )
@ -125,6 +125,8 @@ class ModelDownloader:
if not silent: if not silent:
logger.info(f"Downloading complete: {url}") logger.info(f"Downloading complete: {url}")
return Path(save_path)
@staticmethod @staticmethod
def mark_files_state( def mark_files_state(
requestor: InterProcessRequestor, requestor: InterProcessRequestor,

View File

@ -2,9 +2,14 @@
import logging import logging
import os import os
from typing import Any from typing import Any, Optional
import cv2
import numpy as np
import onnxruntime as ort import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config.semantic_search import FaceRecognitionConfig
try: try:
import openvino as ov import openvino as ov
@ -15,6 +20,9 @@ except ImportError:
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers( def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]: ) -> tuple[list[str], list[dict[str, any]]]:
@ -148,3 +156,127 @@ class ONNXModelRunner:
return [infer_request.get_output_tensor().data] return [infer_request.get_output_tensor().data]
elif self.type == "ort": elif self.type == "ort":
return self.ort.run(None, input) return self.ort.run(None, input)
class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.landmark_detector = cv2.face.createFacemarkLBF()
if os.path.isfile("/config/model_cache/facedet/landmarkdet.yaml"):
self.landmark_detector.loadModel(
"/config/model_cache/facedet/landmarkdet.yaml"
)
self.recognizer: cv2.face.LBPHFaceRecognizer = (
cv2.face.LBPHFaceRecognizer_create(
radius=2, threshold=(1 - config.min_score) * 1000
)
)
self.label_map: dict[int, str] = {}
self.__build_classifier()
def __build_classifier(self) -> None:
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
if name == "train":
continue
face_folder = os.path.join(dir, name)
if not os.path.isdir(face_folder):
continue
self.label_map[idx] = name
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
if img is None:
continue
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
faces.append(img)
labels.append(idx)
self.recognizer.train(faces, np.array(labels))
def __align_face(
self,
image: np.ndarray,
output_width: int,
output_height: int,
) -> np.ndarray:
_, lands = self.landmark_detector.fit(
image, np.array([(0, 0, image.shape[1], image.shape[0])])
)
landmarks = lands[0][0]
# get landmarks for eyes
leftEyePts = landmarks[42:48]
rightEyePts = landmarks[36:42]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - 0.35
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX**2) + (dY**2))
desiredDist = desiredRightEyeX - 0.35
desiredDist *= output_width
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
# grab the rotation matrix for rotating and scaling the face
eyesCenter = (
int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2),
)
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = output_width * 0.5
tY = output_height * 0.35
M[0, 2] += tX - eyesCenter[0]
M[1, 2] += tY - eyesCenter[1]
# apply the affine transformation
return cv2.warpAffine(
image, M, (output_width, output_height), flags=cv2.INTER_CUBIC
)
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
self.label_map = {}
def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]:
if not self.label_map:
self.__build_classifier()
img = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
index, distance = self.recognizer.predict(img)
if index == -1:
return None
score = 1.0 - (distance / 1000)
return self.label_map[index], round(score, 2)

View File

@ -255,7 +255,7 @@ def get_amd_gpu_stats() -> dict[str, str]:
return results return results
def get_intel_gpu_stats() -> dict[str, str]: def get_intel_gpu_stats(sriov: bool) -> dict[str, str]:
"""Get stats using intel_gpu_top.""" """Get stats using intel_gpu_top."""
def get_stats_manually(output: str) -> dict[str, str]: def get_stats_manually(output: str) -> dict[str, str]:
@ -302,6 +302,9 @@ def get_intel_gpu_stats() -> dict[str, str]:
"1", "1",
] ]
if sriov:
intel_gpu_top_command += ["-d", "drm:/dev/dri/card0"]
p = sp.run( p = sp.run(
intel_gpu_top_command, intel_gpu_top_command,
encoding="ascii", encoding="ascii",

View File

@ -19,6 +19,7 @@ const ConfigEditor = lazy(() => import("@/pages/ConfigEditor"));
const System = lazy(() => import("@/pages/System")); const System = lazy(() => import("@/pages/System"));
const Settings = lazy(() => import("@/pages/Settings")); const Settings = lazy(() => import("@/pages/Settings"));
const UIPlayground = lazy(() => import("@/pages/UIPlayground")); const UIPlayground = lazy(() => import("@/pages/UIPlayground"));
const FaceLibrary = lazy(() => import("@/pages/FaceLibrary"));
const Logs = lazy(() => import("@/pages/Logs")); const Logs = lazy(() => import("@/pages/Logs"));
function App() { function App() {
@ -51,6 +52,7 @@ function App() {
<Route path="/config" element={<ConfigEditor />} /> <Route path="/config" element={<ConfigEditor />} />
<Route path="/logs" element={<Logs />} /> <Route path="/logs" element={<Logs />} />
<Route path="/playground" element={<UIPlayground />} /> <Route path="/playground" element={<UIPlayground />} />
<Route path="/faces" element={<FaceLibrary />} />
<Route path="*" element={<Redirect to="/" />} /> <Route path="*" element={<Redirect to="/" />} />
</Routes> </Routes>
</Suspense> </Suspense>

View File

@ -1,4 +1,4 @@
import { useCallback, useEffect, useRef, useState } from "react"; import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import CameraImage from "./CameraImage"; import CameraImage from "./CameraImage";
type AutoUpdatingCameraImageProps = { type AutoUpdatingCameraImageProps = {
@ -8,6 +8,7 @@ type AutoUpdatingCameraImageProps = {
className?: string; className?: string;
cameraClasses?: string; cameraClasses?: string;
reloadInterval?: number; reloadInterval?: number;
periodicCache?: boolean;
}; };
const MIN_LOAD_TIMEOUT_MS = 200; const MIN_LOAD_TIMEOUT_MS = 200;
@ -19,6 +20,7 @@ export default function AutoUpdatingCameraImage({
className, className,
cameraClasses, cameraClasses,
reloadInterval = MIN_LOAD_TIMEOUT_MS, reloadInterval = MIN_LOAD_TIMEOUT_MS,
periodicCache = false,
}: AutoUpdatingCameraImageProps) { }: AutoUpdatingCameraImageProps) {
const [key, setKey] = useState(Date.now()); const [key, setKey] = useState(Date.now());
const [fps, setFps] = useState<string>("0"); const [fps, setFps] = useState<string>("0");
@ -42,6 +44,8 @@ export default function AutoUpdatingCameraImage({
}, [reloadInterval]); }, [reloadInterval]);
const handleLoad = useCallback(() => { const handleLoad = useCallback(() => {
setIsCached(true);
if (reloadInterval == -1) { if (reloadInterval == -1) {
return; return;
} }
@ -66,12 +70,28 @@ export default function AutoUpdatingCameraImage({
// eslint-disable-next-line react-hooks/exhaustive-deps // eslint-disable-next-line react-hooks/exhaustive-deps
}, [key, setFps]); }, [key, setFps]);
// periodic cache to reduce loading indicator
const [isCached, setIsCached] = useState(false);
const cacheKey = useMemo(() => {
let baseParam = "";
if (periodicCache && !isCached) {
baseParam = "store=1";
} else {
baseParam = `cache=${key}`;
}
return `${baseParam}${searchParams ? `&${searchParams}` : ""}`;
}, [isCached, periodicCache, key, searchParams]);
return ( return (
<div className={className}> <div className={className}>
<CameraImage <CameraImage
camera={camera} camera={camera}
onload={handleLoad} onload={handleLoad}
searchParams={`cache=${key}${searchParams ? `&${searchParams}` : ""}`} searchParams={cacheKey}
className={cameraClasses} className={cameraClasses}
/> />
{showFps ? <span className="text-xs">Displaying at {fps}fps</span> : null} {showFps ? <span className="text-xs">Displaying at {fps}fps</span> : null}

View File

@ -0,0 +1,25 @@
import { forwardRef } from "react";
import { LuPlus, LuScanFace } from "react-icons/lu";
import { cn } from "@/lib/utils";
type AddFaceIconProps = {
className?: string;
onClick?: () => void;
};
const AddFaceIcon = forwardRef<HTMLDivElement, AddFaceIconProps>(
({ className, onClick }, ref) => {
return (
<div
ref={ref}
className={cn("relative flex items-center", className)}
onClick={onClick}
>
<LuScanFace className="size-full" />
<LuPlus className="absolute size-4 translate-x-3 translate-y-3" />
</div>
);
},
);
export default AddFaceIcon;

View File

@ -0,0 +1,88 @@
import { Button } from "@/components/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "@/components/ui/dialog";
import { Form, FormControl, FormField, FormItem } from "@/components/ui/form";
import { Input } from "@/components/ui/input";
import { zodResolver } from "@hookform/resolvers/zod";
import { useCallback } from "react";
import { useForm } from "react-hook-form";
import { z } from "zod";
type UploadImageDialogProps = {
open: boolean;
title: string;
description?: string;
setOpen: (open: boolean) => void;
onSave: (file: File) => void;
};
export default function UploadImageDialog({
open,
title,
description,
setOpen,
onSave,
}: UploadImageDialogProps) {
const formSchema = z.object({
file: z.instanceof(FileList, { message: "Please select an image file." }),
});
const form = useForm<z.infer<typeof formSchema>>({
resolver: zodResolver(formSchema),
});
const fileRef = form.register("file");
// upload handler
const onSubmit = useCallback(
(data: z.infer<typeof formSchema>) => {
if (!data["file"]) {
return;
}
onSave(data["file"]["0"]);
},
[onSave],
);
return (
<Dialog open={open} defaultOpen={false} onOpenChange={setOpen}>
<DialogContent>
<DialogHeader>
<DialogTitle>{title}</DialogTitle>
{description && <DialogDescription>{description}</DialogDescription>}
</DialogHeader>
<Form {...form}>
<form onSubmit={form.handleSubmit(onSubmit)}>
<FormField
control={form.control}
name="file"
render={() => (
<FormItem>
<FormControl>
<Input
className="aspect-video h-40 w-full"
type="file"
{...fileRef}
/>
</FormControl>
</FormItem>
)}
/>
<DialogFooter className="pt-4">
<Button onClick={() => setOpen(false)}>Cancel</Button>
<Button variant="select" type="submit">
Save
</Button>
</DialogFooter>
</form>
</Form>
</DialogContent>
</Dialog>
);
}

View File

@ -294,10 +294,11 @@ export default function LivePlayer({
> >
<AutoUpdatingCameraImage <AutoUpdatingCameraImage
className="size-full" className="size-full"
cameraClasses="relative size-full flex justify-center"
camera={cameraConfig.name} camera={cameraConfig.name}
showFps={false} showFps={false}
reloadInterval={stillReloadInterval} reloadInterval={stillReloadInterval}
cameraClasses="relative size-full flex justify-center" periodicCache
/> />
</div> </div>

View File

@ -1,20 +1,29 @@
import { ENV } from "@/env"; import { ENV } from "@/env";
import { FrigateConfig } from "@/types/frigateConfig";
import { NavData } from "@/types/navigation"; import { NavData } from "@/types/navigation";
import { useMemo } from "react"; import { useMemo } from "react";
import { isDesktop } from "react-device-detect";
import { FaCompactDisc, FaVideo } from "react-icons/fa"; import { FaCompactDisc, FaVideo } from "react-icons/fa";
import { IoSearch } from "react-icons/io5"; import { IoSearch } from "react-icons/io5";
import { LuConstruction } from "react-icons/lu"; import { LuConstruction } from "react-icons/lu";
import { MdVideoLibrary } from "react-icons/md"; import { MdVideoLibrary } from "react-icons/md";
import { TbFaceId } from "react-icons/tb";
import useSWR from "swr";
export const ID_LIVE = 1; export const ID_LIVE = 1;
export const ID_REVIEW = 2; export const ID_REVIEW = 2;
export const ID_EXPLORE = 3; export const ID_EXPLORE = 3;
export const ID_EXPORT = 4; export const ID_EXPORT = 4;
export const ID_PLAYGROUND = 5; export const ID_PLAYGROUND = 5;
export const ID_FACE_LIBRARY = 6;
export default function useNavigation( export default function useNavigation(
variant: "primary" | "secondary" = "primary", variant: "primary" | "secondary" = "primary",
) { ) {
const { data: config } = useSWR<FrigateConfig>("config", {
revalidateOnFocus: false,
});
return useMemo( return useMemo(
() => () =>
[ [
@ -54,7 +63,15 @@ export default function useNavigation(
url: "/playground", url: "/playground",
enabled: ENV !== "production", enabled: ENV !== "production",
}, },
{
id: ID_FACE_LIBRARY,
variant,
icon: TbFaceId,
title: "Face Library",
url: "/faces",
enabled: isDesktop && config?.face_recognition.enabled,
},
] as NavData[], ] as NavData[],
[variant], [config?.face_recognition.enabled, variant],
); );
} }

View File

@ -0,0 +1,411 @@
import { baseUrl } from "@/api/baseUrl";
import AddFaceIcon from "@/components/icons/AddFaceIcon";
import UploadImageDialog from "@/components/overlay/dialog/UploadImageDialog";
import { Button } from "@/components/ui/button";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuLabel,
DropdownMenuTrigger,
} from "@/components/ui/dropdown-menu";
import { ScrollArea, ScrollBar } from "@/components/ui/scroll-area";
import { Toaster } from "@/components/ui/sonner";
import { ToggleGroup, ToggleGroupItem } from "@/components/ui/toggle-group";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/ui/tooltip";
import useOptimisticState from "@/hooks/use-optimistic-state";
import axios from "axios";
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import { LuImagePlus, LuTrash2 } from "react-icons/lu";
import { toast } from "sonner";
import useSWR from "swr";
export default function FaceLibrary() {
// title
useEffect(() => {
document.title = "Face Library - Frigate";
}, []);
const [page, setPage] = useState<string>();
const [pageToggle, setPageToggle] = useOptimisticState(page, setPage, 100);
const tabsRef = useRef<HTMLDivElement | null>(null);
// face data
const { data: faceData, mutate: refreshFaces } = useSWR("faces");
const faces = useMemo<string[]>(
() =>
faceData ? Object.keys(faceData).filter((face) => face != "train") : [],
[faceData],
);
const faceImages = useMemo<string[]>(
() => (pageToggle && faceData ? faceData[pageToggle] : []),
[pageToggle, faceData],
);
const trainImages = useMemo<string[]>(
() => faceData?.["train"] || [],
[faceData],
);
useEffect(() => {
if (!pageToggle) {
if (trainImages.length > 0) {
setPageToggle("train");
} else if (faces) {
setPageToggle(faces[0]);
}
} else if (pageToggle == "train" && trainImages.length == 0) {
setPageToggle(faces[0]);
}
// we need to listen on the value of the faces list
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [trainImages, faces]);
// upload
const [upload, setUpload] = useState(false);
const onUploadImage = useCallback(
(file: File) => {
const formData = new FormData();
formData.append("file", file);
axios
.post(`faces/${pageToggle}`, formData, {
headers: {
"Content-Type": "multipart/form-data",
},
})
.then((resp) => {
if (resp.status == 200) {
setUpload(false);
refreshFaces();
toast.success(
"Successfully uploaded image. View the file in the /exports folder.",
{ position: "top-center" },
);
}
})
.catch((error) => {
if (error.response?.data?.message) {
toast.error(
`Failed to upload image: ${error.response.data.message}`,
{ position: "top-center" },
);
} else {
toast.error(`Failed to upload image: ${error.message}`, {
position: "top-center",
});
}
});
},
[pageToggle, refreshFaces],
);
return (
<div className="flex size-full flex-col p-2">
<Toaster />
<UploadImageDialog
open={upload}
title="Upload Face Image"
description={`Upload an image to scan for faces and include for ${pageToggle}`}
setOpen={setUpload}
onSave={onUploadImage}
/>
<div className="relative flex h-11 w-full items-center justify-between">
<ScrollArea className="w-full whitespace-nowrap">
<div ref={tabsRef} className="flex flex-row">
<ToggleGroup
className="*:rounded-md *:px-3 *:py-4"
type="single"
size="sm"
value={pageToggle}
onValueChange={(value: string) => {
if (value) {
setPageToggle(value);
}
}}
>
{trainImages.length > 0 && (
<>
<ToggleGroupItem
value="train"
className={`flex scroll-mx-10 items-center justify-between gap-2 ${pageToggle == "train" ? "" : "*:text-muted-foreground"}`}
data-nav-item="train"
aria-label="Select train"
>
<div>Train</div>
</ToggleGroupItem>
<div>|</div>
</>
)}
{Object.values(faces).map((item) => (
<ToggleGroupItem
key={item}
className={`flex scroll-mx-10 items-center justify-between gap-2 ${pageToggle == item ? "" : "*:text-muted-foreground"}`}
value={item}
data-nav-item={item}
aria-label={`Select ${item}`}
>
<div className="capitalize">{item}</div>
</ToggleGroupItem>
))}
</ToggleGroup>
<ScrollBar orientation="horizontal" className="h-0" />
</div>
</ScrollArea>
</div>
{pageToggle &&
(pageToggle == "train" ? (
<TrainingGrid
attemptImages={trainImages}
faceNames={faces}
onRefresh={refreshFaces}
/>
) : (
<FaceGrid
faceImages={faceImages}
pageToggle={pageToggle}
setUpload={setUpload}
onRefresh={refreshFaces}
/>
))}
</div>
);
}
type TrainingGridProps = {
attemptImages: string[];
faceNames: string[];
onRefresh: () => void;
};
function TrainingGrid({
attemptImages,
faceNames,
onRefresh,
}: TrainingGridProps) {
return (
<div className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll">
{attemptImages.map((image: string) => (
<FaceAttempt
key={image}
image={image}
faceNames={faceNames}
onRefresh={onRefresh}
/>
))}
</div>
);
}
type FaceAttemptProps = {
image: string;
faceNames: string[];
onRefresh: () => void;
};
function FaceAttempt({ image, faceNames, onRefresh }: FaceAttemptProps) {
const data = useMemo(() => {
const parts = image.split("-");
return {
eventId: `${parts[0]}-${parts[1]}`,
name: parts[2],
score: parts[3],
};
}, [image]);
const onTrainAttempt = useCallback(
(trainName: string) => {
axios
.post(`/faces/train/${trainName}/classify`, { training_file: image })
.then((resp) => {
if (resp.status == 200) {
toast.success(`Successfully trained face.`, {
position: "top-center",
});
onRefresh();
}
})
.catch((error) => {
if (error.response?.data?.message) {
toast.error(`Failed to train: ${error.response.data.message}`, {
position: "top-center",
});
} else {
toast.error(`Failed to train: ${error.message}`, {
position: "top-center",
});
}
});
},
[image, onRefresh],
);
const onDelete = useCallback(() => {
axios
.post(`/faces/train/delete`, { ids: [image] })
.then((resp) => {
if (resp.status == 200) {
toast.success(`Successfully deleted face.`, {
position: "top-center",
});
onRefresh();
}
})
.catch((error) => {
if (error.response?.data?.message) {
toast.error(`Failed to delete: ${error.response.data.message}`, {
position: "top-center",
});
} else {
toast.error(`Failed to delete: ${error.message}`, {
position: "top-center",
});
}
});
}, [image, onRefresh]);
return (
<div className="relative flex flex-col rounded-lg">
<div className="w-full overflow-hidden rounded-t-lg border border-t-0 *:text-card-foreground">
<img className="h-40" src={`${baseUrl}clips/faces/train/${image}`} />
</div>
<div className="rounded-b-lg bg-card p-2">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="capitalize">{data.name}</div>
<div>{Number.parseFloat(data.score) * 100}%</div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<DropdownMenu>
<DropdownMenuTrigger>
<TooltipTrigger>
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</TooltipTrigger>
</DropdownMenuTrigger>
<DropdownMenuContent>
<DropdownMenuLabel>Train Face as:</DropdownMenuLabel>
{faceNames.map((faceName) => (
<DropdownMenuItem
key={faceName}
className="cursor-pointer capitalize"
onClick={() => onTrainAttempt(faceName)}
>
{faceName}
</DropdownMenuItem>
))}
</DropdownMenuContent>
</DropdownMenu>
<TooltipContent>Train Face as Person</TooltipContent>
</Tooltip>
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={onDelete}
/>
</TooltipTrigger>
<TooltipContent>Delete Face Attempt</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
);
}
type FaceGridProps = {
faceImages: string[];
pageToggle: string;
setUpload: (upload: boolean) => void;
onRefresh: () => void;
};
function FaceGrid({
faceImages,
pageToggle,
setUpload,
onRefresh,
}: FaceGridProps) {
return (
<div className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll">
{faceImages.map((image: string) => (
<FaceImage
key={image}
name={pageToggle}
image={image}
onRefresh={onRefresh}
/>
))}
<Button key="upload" className="size-40" onClick={() => setUpload(true)}>
<LuImagePlus className="size-10" />
</Button>
</div>
);
}
type FaceImageProps = {
name: string;
image: string;
onRefresh: () => void;
};
function FaceImage({ name, image, onRefresh }: FaceImageProps) {
const onDelete = useCallback(() => {
axios
.post(`/faces/${name}/delete`, { ids: [image] })
.then((resp) => {
if (resp.status == 200) {
toast.success(`Successfully deleted face.`, {
position: "top-center",
});
onRefresh();
}
})
.catch((error) => {
if (error.response?.data?.message) {
toast.error(`Failed to delete: ${error.response.data.message}`, {
position: "top-center",
});
} else {
toast.error(`Failed to delete: ${error.message}`, {
position: "top-center",
});
}
});
}, [name, image, onRefresh]);
return (
<div className="relative flex flex-col rounded-lg">
<div className="w-full overflow-hidden rounded-t-lg border border-t-0 *:text-card-foreground">
<img className="h-40" src={`${baseUrl}clips/faces/${name}/${image}`} />
</div>
<div className="rounded-b-lg bg-card p-2">
<div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex flex-col items-start text-xs text-primary-variant">
<div className="capitalize">{name}</div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<TooltipTrigger>
<LuTrash2
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={onDelete}
/>
</TooltipTrigger>
<TooltipContent>Delete Face Attempt</TooltipContent>
</Tooltip>
</div>
</div>
</div>
</div>
);
}

View File

@ -288,6 +288,10 @@ export interface FrigateConfig {
environment_vars: Record<string, unknown>; environment_vars: Record<string, unknown>;
face_recognition: {
enabled: boolean;
};
ffmpeg: { ffmpeg: {
global_args: string[]; global_args: string[];
hwaccel_args: string; hwaccel_args: string;