diff --git a/frigate/embeddings/functions/onnx.py b/frigate/embeddings/functions/onnx.py index c82b60517..454fe3faf 100644 --- a/frigate/embeddings/functions/onnx.py +++ b/frigate/embeddings/functions/onnx.py @@ -119,27 +119,21 @@ class GenericONNXEmbedding: ) def _load_tokenizer(self): - if not self.tokenizer: - tokenizer_path = os.path.join( - f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer" - ) - self.tokenizer = AutoTokenizer.from_pretrained( - self.model_name, - cache_dir=tokenizer_path, - trust_remote_code=True, - clean_up_tokenization_spaces=True, - ) + tokenizer_path = os.path.join(f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer") + return AutoTokenizer.from_pretrained( + self.model_name, + cache_dir=tokenizer_path, + trust_remote_code=True, + clean_up_tokenization_spaces=True, + ) def _load_feature_extractor(self): - if not self.feature_extractor: - feature_extractor_path = os.path.join( - f"{MODEL_CACHE_DIR}/{self.model_name}/feature_extractor" - ) - self.feature_extractor = AutoFeatureExtractor.from_pretrained( - self.model_name, - trust_remote_code=True, - cache_dir=feature_extractor_path, - ) + feature_extractor_path = os.path.join( + f"{MODEL_CACHE_DIR}/{self.model_name}/feature_extractor" + ) + return AutoFeatureExtractor.from_pretrained( + self.model_name, trust_remote_code=True, cache_dir=feature_extractor_path + ) def _load_model(self, path: str, providers: List[str]): if os.path.exists(path):