mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-07 03:35:26 +03:00
Formatting
This commit is contained in:
parent
6b49b81ba4
commit
b72d9a49b2
@ -2,11 +2,18 @@
|
||||
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import CameraConfig
|
||||
from frigate.config import CameraConfig, ModelConfig
|
||||
from frigate.detectors.detector_config import PixelFormatEnum
|
||||
from frigate.models import Timeline
|
||||
from frigate.util.image import calculate_region
|
||||
from frigate.util.image import (
|
||||
calculate_region,
|
||||
yuv_region_2_bgr,
|
||||
yuv_region_2_rgb,
|
||||
yuv_region_2_yuv,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -69,7 +76,9 @@ def get_camera_regions_grid(
|
||||
1.35,
|
||||
)
|
||||
# save width of region to grid as relative
|
||||
grid[x_pos][y_pos]["sizes"].append((calculated_region[2] - calculated_region[0]) / width)
|
||||
grid[x_pos][y_pos]["sizes"].append(
|
||||
(calculated_region[2] - calculated_region[0]) / width
|
||||
)
|
||||
|
||||
for x in range(grid_size):
|
||||
for y in range(grid_size):
|
||||
@ -81,8 +90,8 @@ def get_camera_regions_grid(
|
||||
if len(cell["sizes"]) == 0:
|
||||
continue
|
||||
|
||||
std_dev = numpy.std(cell["sizes"])
|
||||
mean = numpy.mean(cell["sizes"])
|
||||
std_dev = np.std(cell["sizes"])
|
||||
mean = np.mean(cell["sizes"])
|
||||
logger.debug(f"std dev: {std_dev} mean: {mean}")
|
||||
cell["std_dev"] = std_dev
|
||||
cell["mean"] = mean
|
||||
@ -143,3 +152,82 @@ def get_region_from_grid(
|
||||
min_region,
|
||||
)
|
||||
return new
|
||||
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
object_score = obj[1]
|
||||
object_box = obj[2]
|
||||
object_area = obj[3]
|
||||
object_ratio = obj[4]
|
||||
|
||||
if object_name not in objects_to_track:
|
||||
return True
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > object_area:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < object_area:
|
||||
return True
|
||||
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.min_score > object_score:
|
||||
return True
|
||||
|
||||
# if the object is not proportionally wide enough
|
||||
if obj_settings.min_ratio > object_ratio:
|
||||
return True
|
||||
|
||||
# if the object is proportionally too wide
|
||||
if obj_settings.max_ratio < object_ratio:
|
||||
return True
|
||||
|
||||
if obj_settings.mask is not None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isn't outside the bounds of the image (can happen from rounding)
|
||||
object_xmin = object_box[0]
|
||||
object_xmax = object_box[2]
|
||||
object_ymax = object_box[3]
|
||||
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
|
||||
x_location = min(
|
||||
int((object_xmax + object_xmin) / 2.0),
|
||||
len(obj_settings.mask[0]) - 1,
|
||||
)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_min_region_size(model_config: ModelConfig) -> int:
|
||||
"""Get the min region size."""
|
||||
return max(model_config.height, model_config.width)
|
||||
|
||||
|
||||
def create_tensor_input(frame, model_config: ModelConfig, region):
|
||||
if model_config.input_pixel_format == PixelFormatEnum.rgb:
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
|
||||
cropped_frame = yuv_region_2_bgr(frame, region)
|
||||
else:
|
||||
cropped_frame = yuv_region_2_yuv(frame, region)
|
||||
|
||||
# Resize if needed
|
||||
if cropped_frame.shape != (model_config.height, model_config.width, 3):
|
||||
cropped_frame = cv2.resize(
|
||||
cropped_frame,
|
||||
dsize=(model_config.width, model_config.height),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
@ -16,7 +16,6 @@ from setproctitle import setproctitle
|
||||
|
||||
from frigate.config import CameraConfig, DetectConfig, ModelConfig
|
||||
from frigate.const import ALL_ATTRIBUTE_LABELS, ATTRIBUTE_LABEL_MAP, CACHE_DIR
|
||||
from frigate.detectors.detector_config import PixelFormatEnum
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.motion.improved_motion import ImprovedMotionDetector
|
||||
@ -33,9 +32,6 @@ from frigate.util.image import (
|
||||
draw_box_with_label,
|
||||
intersection,
|
||||
intersection_over_union,
|
||||
yuv_region_2_bgr,
|
||||
yuv_region_2_rgb,
|
||||
yuv_region_2_yuv,
|
||||
)
|
||||
from frigate.util.object import get_cluster_region_from_grid
|
||||
from frigate.util.services import listen
|
||||
@ -43,85 +39,6 @@ from frigate.util.services import listen
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
object_score = obj[1]
|
||||
object_box = obj[2]
|
||||
object_area = obj[3]
|
||||
object_ratio = obj[4]
|
||||
|
||||
if object_name not in objects_to_track:
|
||||
return True
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > object_area:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < object_area:
|
||||
return True
|
||||
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.min_score > object_score:
|
||||
return True
|
||||
|
||||
# if the object is not proportionally wide enough
|
||||
if obj_settings.min_ratio > object_ratio:
|
||||
return True
|
||||
|
||||
# if the object is proportionally too wide
|
||||
if obj_settings.max_ratio < object_ratio:
|
||||
return True
|
||||
|
||||
if obj_settings.mask is not None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isn't outside the bounds of the image (can happen from rounding)
|
||||
object_xmin = object_box[0]
|
||||
object_xmax = object_box[2]
|
||||
object_ymax = object_box[3]
|
||||
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
|
||||
x_location = min(
|
||||
int((object_xmax + object_xmin) / 2.0),
|
||||
len(obj_settings.mask[0]) - 1,
|
||||
)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_min_region_size(model_config: ModelConfig) -> int:
|
||||
"""Get the min region size."""
|
||||
return max(model_config.height, model_config.width)
|
||||
|
||||
|
||||
def create_tensor_input(frame, model_config: ModelConfig, region):
|
||||
if model_config.input_pixel_format == PixelFormatEnum.rgb:
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
|
||||
cropped_frame = yuv_region_2_bgr(frame, region)
|
||||
else:
|
||||
cropped_frame = yuv_region_2_yuv(frame, region)
|
||||
|
||||
# Resize if needed
|
||||
if cropped_frame.shape != (model_config.height, model_config.width, 3):
|
||||
cropped_frame = cv2.resize(
|
||||
cropped_frame,
|
||||
dsize=(model_config.width, model_config.height),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
|
||||
def stop_ffmpeg(ffmpeg_process, logger):
|
||||
logger.info("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
@ -842,11 +759,16 @@ def process_frames(
|
||||
# only add in the motion boxes when not calibrating
|
||||
if not motion_detector.is_calibrating():
|
||||
# find motion boxes that are not inside tracked object regions
|
||||
standalone_motion_boxes = [b for b in motion_boxes if not inside_any(b, regions)]
|
||||
standalone_motion_boxes = [
|
||||
b for b in motion_boxes if not inside_any(b, regions)
|
||||
]
|
||||
|
||||
if standalone_motion_boxes:
|
||||
motion_clusters = get_cluster_candidates(
|
||||
frame_shape, region_min_size, standalone_motion_boxes, region_grid
|
||||
frame_shape,
|
||||
region_min_size,
|
||||
standalone_motion_boxes,
|
||||
region_grid,
|
||||
)
|
||||
motion_regions = [
|
||||
get_cluster_region_from_grid(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user