mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-15 15:45:27 +03:00
Increase requirements for face to be set
This commit is contained in:
parent
b7f9eb2ee6
commit
b34a51903f
@ -32,6 +32,7 @@ from .embeddings import Embeddings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
REQUIRED_FACES = 2
|
||||
MAX_THUMBNAILS = 10
|
||||
|
||||
|
||||
@ -65,6 +66,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
self.config.semantic_search.face_recognition.enabled
|
||||
)
|
||||
self.requires_face_detection = "face" not in self.config.model.all_attributes
|
||||
self.detected_faces: dict[str, float] = {}
|
||||
|
||||
# create communication for updating event descriptions
|
||||
self.requestor = InterProcessRequestor()
|
||||
@ -276,25 +278,28 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
def _search_face(self, query_embedding: bytes) -> list:
|
||||
"""Search for the face most closely matching the embedding."""
|
||||
sql_query = """
|
||||
sql_query = f"""
|
||||
SELECT
|
||||
id,
|
||||
distance
|
||||
FROM vec_faces
|
||||
WHERE face_embedding MATCH ?
|
||||
AND k = 10 ORDER BY distance
|
||||
AND k = {REQUIRED_FACES} ORDER BY distance
|
||||
"""
|
||||
return self.embeddings.db.execute_sql(sql_query, [query_embedding]).fetchall()
|
||||
|
||||
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
|
||||
"""Look for faces in image."""
|
||||
id = obj_data["id"]
|
||||
|
||||
# don't run for non person objects
|
||||
if obj_data.get("label") != "person":
|
||||
logger.debug("Not a processing face for non person object.")
|
||||
return
|
||||
|
||||
# don't overwrite sub label for objects that have one
|
||||
if obj_data.get("sub_label"):
|
||||
# don't overwrite sub label for objects that have a sub label
|
||||
# that is not a face
|
||||
if obj_data.get("sub_label") and id not in self.detected_faces:
|
||||
logger.debug(
|
||||
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
|
||||
)
|
||||
@ -348,18 +353,25 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
best_faces = self._search_face(query_embedding)
|
||||
logger.debug(f"Detected best faces for person as: {best_faces}")
|
||||
|
||||
if not best_faces:
|
||||
if not best_faces or len(best_faces) < REQUIRED_FACES:
|
||||
return
|
||||
|
||||
sub_label = str(best_faces[0][0]).split("-")[0]
|
||||
score = 1.0 - best_faces[0][1]
|
||||
avg_score = 0
|
||||
|
||||
if score < self.config.semantic_search.face_recognition.threshold:
|
||||
return None
|
||||
for face in best_faces:
|
||||
score = 1.0 - face[1]
|
||||
|
||||
if score < self.config.semantic_search.face_recognition.threshold:
|
||||
return None
|
||||
|
||||
avg_score += score
|
||||
|
||||
avg_score = avg_score / REQUIRED_FACES
|
||||
self.detected_faces[id] = avg_score
|
||||
requests.post(
|
||||
f"{FRIGATE_LOCALHOST}/api/events/{obj_data['id']}/sub_label",
|
||||
json={"subLabel": sub_label, "subLabelScore": score},
|
||||
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
|
||||
json={"subLabel": sub_label, "subLabelScore": avg_score},
|
||||
)
|
||||
|
||||
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user