mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-26 14:08:30 +03:00
mitigate tensorflow atexit crash by pre-importing tflite/tensorflow on main thread
Pre-import Interpreter in embeddings maintainer and add defensive lazy imports in classification processors to avoid worker-thread tensorflow imports causing "can't register atexit after shutdown"
This commit is contained in:
parent
29a747ca83
commit
ae0c1ca941
@ -19,11 +19,6 @@ from frigate.util.object import calculate_region
|
|||||||
from ..types import DataProcessorMetrics
|
from ..types import DataProcessorMetrics
|
||||||
from .api import RealTimeProcessorApi
|
from .api import RealTimeProcessorApi
|
||||||
|
|
||||||
try:
|
|
||||||
from tflite_runtime.interpreter import Interpreter
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
from tensorflow.lite.python.interpreter import Interpreter
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@ -35,7 +30,7 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
metrics: DataProcessorMetrics,
|
metrics: DataProcessorMetrics,
|
||||||
):
|
):
|
||||||
super().__init__(config, metrics)
|
super().__init__(config, metrics)
|
||||||
self.interpreter: Interpreter = None
|
self.interpreter: Any | None = None
|
||||||
self.sub_label_publisher = sub_label_publisher
|
self.sub_label_publisher = sub_label_publisher
|
||||||
self.tensor_input_details: dict[str, Any] = None
|
self.tensor_input_details: dict[str, Any] = None
|
||||||
self.tensor_output_details: dict[str, Any] = None
|
self.tensor_output_details: dict[str, Any] = None
|
||||||
@ -82,6 +77,11 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||||
def __build_detector(self) -> None:
|
def __build_detector(self) -> None:
|
||||||
|
try:
|
||||||
|
from tflite_runtime.interpreter import Interpreter
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
from tensorflow.lite.python.interpreter import Interpreter
|
||||||
|
|
||||||
self.interpreter = Interpreter(
|
self.interpreter = Interpreter(
|
||||||
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
||||||
num_threads=2,
|
num_threads=2,
|
||||||
|
|||||||
@ -29,11 +29,6 @@ from frigate.util.object import box_overlaps, calculate_region
|
|||||||
from ..types import DataProcessorMetrics
|
from ..types import DataProcessorMetrics
|
||||||
from .api import RealTimeProcessorApi
|
from .api import RealTimeProcessorApi
|
||||||
|
|
||||||
try:
|
|
||||||
from tflite_runtime.interpreter import Interpreter
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
from tensorflow.lite.python.interpreter import Interpreter
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
MAX_OBJECT_CLASSIFICATIONS = 16
|
MAX_OBJECT_CLASSIFICATIONS = 16
|
||||||
@ -52,7 +47,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
|||||||
self.requestor = requestor
|
self.requestor = requestor
|
||||||
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
|
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
|
||||||
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
|
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
|
||||||
self.interpreter: Interpreter | None = None
|
self.interpreter: Any | None = None
|
||||||
self.tensor_input_details: dict[str, Any] | None = None
|
self.tensor_input_details: dict[str, Any] | None = None
|
||||||
self.tensor_output_details: dict[str, Any] | None = None
|
self.tensor_output_details: dict[str, Any] | None = None
|
||||||
self.labelmap: dict[int, str] = {}
|
self.labelmap: dict[int, str] = {}
|
||||||
@ -74,6 +69,11 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||||
def __build_detector(self) -> None:
|
def __build_detector(self) -> None:
|
||||||
|
try:
|
||||||
|
from tflite_runtime.interpreter import Interpreter
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
from tensorflow.lite.python.interpreter import Interpreter
|
||||||
|
|
||||||
model_path = os.path.join(self.model_dir, "model.tflite")
|
model_path = os.path.join(self.model_dir, "model.tflite")
|
||||||
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
|
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
|
||||||
|
|
||||||
@ -345,7 +345,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
self.model_config = model_config
|
self.model_config = model_config
|
||||||
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
|
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
|
||||||
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
|
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
|
||||||
self.interpreter: Interpreter | None = None
|
self.interpreter: Any | None = None
|
||||||
self.sub_label_publisher = sub_label_publisher
|
self.sub_label_publisher = sub_label_publisher
|
||||||
self.requestor = requestor
|
self.requestor = requestor
|
||||||
self.tensor_input_details: dict[str, Any] | None = None
|
self.tensor_input_details: dict[str, Any] | None = None
|
||||||
@ -368,6 +368,11 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||||
def __build_detector(self) -> None:
|
def __build_detector(self) -> None:
|
||||||
|
try:
|
||||||
|
from tflite_runtime.interpreter import Interpreter
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
from tensorflow.lite.python.interpreter import Interpreter
|
||||||
|
|
||||||
model_path = os.path.join(self.model_dir, "model.tflite")
|
model_path = os.path.join(self.model_dir, "model.tflite")
|
||||||
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
|
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
|
||||||
|
|
||||||
|
|||||||
@ -146,6 +146,29 @@ class EmbeddingMaintainer(threading.Thread):
|
|||||||
self.detected_license_plates: dict[str, dict[str, Any]] = {}
|
self.detected_license_plates: dict[str, dict[str, Any]] = {}
|
||||||
self.genai_client = get_genai_client(config)
|
self.genai_client = get_genai_client(config)
|
||||||
|
|
||||||
|
# Pre-import TensorFlow/tflite on main thread to avoid atexit registration issues
|
||||||
|
# when importing from worker threads later (e.g., during dynamic config updates)
|
||||||
|
if (
|
||||||
|
self.config.classification.bird.enabled
|
||||||
|
or len(self.config.classification.custom) > 0
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
from tflite_runtime.interpreter import Interpreter # noqa: F401
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
try:
|
||||||
|
from tensorflow.lite.python.interpreter import ( # noqa: F401
|
||||||
|
Interpreter,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
"Pre-imported TensorFlow Interpreter on main thread for classification models"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
f"Failed to pre-import TensorFlow Interpreter: {e}. "
|
||||||
|
"Classification models may fail to load if added dynamically."
|
||||||
|
)
|
||||||
|
|
||||||
# model runners to share between realtime and post processors
|
# model runners to share between realtime and post processors
|
||||||
if self.config.lpr.enabled:
|
if self.config.lpr.enabled:
|
||||||
lpr_model_runner = LicensePlateModelRunner(
|
lpr_model_runner = LicensePlateModelRunner(
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user