mitigate tensorflow atexit crash by pre-importing tflite/tensorflow on main thread

Pre-import Interpreter in embeddings maintainer and add defensive lazy imports in classification processors to avoid worker-thread tensorflow imports causing "can't register atexit after shutdown"
This commit is contained in:
Josh Hawkins 2025-12-15 21:56:39 -06:00
parent 29a747ca83
commit ae0c1ca941
3 changed files with 41 additions and 13 deletions

View File

@ -19,11 +19,6 @@ from frigate.util.object import calculate_region
from ..types import DataProcessorMetrics
from .api import RealTimeProcessorApi
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
logger = logging.getLogger(__name__)
@ -35,7 +30,7 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
metrics: DataProcessorMetrics,
):
super().__init__(config, metrics)
self.interpreter: Interpreter = None
self.interpreter: Any | None = None
self.sub_label_publisher = sub_label_publisher
self.tensor_input_details: dict[str, Any] = None
self.tensor_output_details: dict[str, Any] = None
@ -82,6 +77,11 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
self.interpreter = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
num_threads=2,

View File

@ -29,11 +29,6 @@ from frigate.util.object import box_overlaps, calculate_region
from ..types import DataProcessorMetrics
from .api import RealTimeProcessorApi
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
logger = logging.getLogger(__name__)
MAX_OBJECT_CLASSIFICATIONS = 16
@ -52,7 +47,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.requestor = requestor
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Any | None = None
self.tensor_input_details: dict[str, Any] | None = None
self.tensor_output_details: dict[str, Any] | None = None
self.labelmap: dict[int, str] = {}
@ -74,6 +69,11 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
@ -345,7 +345,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.model_config = model_config
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Any | None = None
self.sub_label_publisher = sub_label_publisher
self.requestor = requestor
self.tensor_input_details: dict[str, Any] | None = None
@ -368,6 +368,11 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")

View File

@ -146,6 +146,29 @@ class EmbeddingMaintainer(threading.Thread):
self.detected_license_plates: dict[str, dict[str, Any]] = {}
self.genai_client = get_genai_client(config)
# Pre-import TensorFlow/tflite on main thread to avoid atexit registration issues
# when importing from worker threads later (e.g., during dynamic config updates)
if (
self.config.classification.bird.enabled
or len(self.config.classification.custom) > 0
):
try:
from tflite_runtime.interpreter import Interpreter # noqa: F401
except ModuleNotFoundError:
try:
from tensorflow.lite.python.interpreter import ( # noqa: F401
Interpreter,
)
logger.debug(
"Pre-imported TensorFlow Interpreter on main thread for classification models"
)
except Exception as e:
logger.warning(
f"Failed to pre-import TensorFlow Interpreter: {e}. "
"Classification models may fail to load if added dynamically."
)
# model runners to share between realtime and post processors
if self.config.lpr.enabled:
lpr_model_runner = LicensePlateModelRunner(