mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-14 15:15:22 +03:00
Fixup image creation
This commit is contained in:
parent
e00238e297
commit
aabbb2e3f3
@ -10,7 +10,11 @@ from pydantic import Field
|
||||
from typing_extensions import Literal
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.detectors.detector_config import (
|
||||
BaseDetectorConfig,
|
||||
ModelTypeEnum,
|
||||
PixelFormatEnum,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -78,10 +82,13 @@ class ROCmDetector(DetectionApi):
|
||||
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
||||
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
|
||||
|
||||
self.h = detector_config.model.height
|
||||
self.w = detector_config.model.width
|
||||
self.rocm_model_type = detector_config.model.model_type
|
||||
self.rocm_model_px = detector_config.model.input_pixel_format
|
||||
path = detector_config.model.path
|
||||
mxr_path = os.path.splitext(path)[0] + ".mxr"
|
||||
|
||||
mxr_path = os.path.splitext(path)[0] + ".mxr"
|
||||
if path.endswith(".mxr"):
|
||||
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
||||
self.model = migraphx.load(mxr_path)
|
||||
@ -121,27 +128,43 @@ class ROCmDetector(DetectionApi):
|
||||
model_input_shape = tuple(
|
||||
self.model.get_parameter_shapes()[model_input_name].lens()
|
||||
)
|
||||
logger.info(f"the model input shape is {model_input_shape}")
|
||||
|
||||
tensor_input = cv2.dnn.blobFromImage(
|
||||
tensor_input[0],
|
||||
1.0 / 255,
|
||||
(model_input_shape[2], model_input_shape[3]),
|
||||
1.0,
|
||||
(model_input_shape[3], model_input_shape[2]),
|
||||
None,
|
||||
swapRB=False,
|
||||
)
|
||||
swapRB=self.rocm_model_px == PixelFormatEnum.bgr,
|
||||
).astype(np.uint8)
|
||||
|
||||
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
||||
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
||||
|
||||
# ruff: noqa: F841
|
||||
tensor_output = np.ctypeslib.as_array(
|
||||
addr, shape=detector_result.get_shape().lens()
|
||||
)
|
||||
|
||||
if self.rocm_model_type == ModelTypeEnum.yolonas:
|
||||
logger.info(f"ROCM output has {tensor_output.shape[2]} boxes")
|
||||
return np.zeros((20, 6), np.float32)
|
||||
predictions = tensor_output
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, prediction in enumerate(predictions):
|
||||
if i == 20:
|
||||
break
|
||||
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
||||
# when running in GPU mode, empty predictions in the output have class_id of -1
|
||||
if class_id < 0:
|
||||
break
|
||||
detections[i] = [
|
||||
class_id,
|
||||
confidence,
|
||||
y_min / self.h,
|
||||
x_min / self.w,
|
||||
y_max / self.h,
|
||||
x_max / self.w,
|
||||
]
|
||||
return detections
|
||||
else:
|
||||
raise Exception(
|
||||
f"{self.rocm_model_type} is currently not supported for rocm. See the docs for more info on supported models."
|
||||
|
||||
Loading…
Reference in New Issue
Block a user