mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 05:24:11 +03:00
Move to new file and add config to disable if needed
This commit is contained in:
parent
b3ba6d8e06
commit
a93c1e5653
@ -287,6 +287,9 @@ detect:
|
||||
max_disappeared: 25
|
||||
# Optional: Configuration for stationary object tracking
|
||||
stationary:
|
||||
# Optional: Stationary classifier that uses visual characteristics to determine if an object
|
||||
# is stationary even if the box changes enough to be considered motion (default: shown below).
|
||||
classifier: True
|
||||
# Optional: Frequency for confirming stationary objects (default: same as threshold)
|
||||
# When set to 1, object detection will run to confirm the object still exists on every frame.
|
||||
# If set to 10, object detection will run to confirm the object still exists on every 10th frame.
|
||||
|
||||
@ -29,6 +29,10 @@ class StationaryConfig(FrigateBaseModel):
|
||||
default_factory=StationaryMaxFramesConfig,
|
||||
title="Max frames for stationary objects.",
|
||||
)
|
||||
classifier: bool = Field(
|
||||
default=True,
|
||||
title="Enable visual classifier for determing if objects with jittery bounding boxes are stationary.",
|
||||
)
|
||||
|
||||
|
||||
class DetectConfig(FrigateBaseModel):
|
||||
|
||||
@ -5,6 +5,7 @@ from typing import Any, Sequence, cast
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from frigate.track.stationary_classifier import StationaryMotionClassifier
|
||||
from norfair.drawing.draw_boxes import draw_boxes
|
||||
from norfair.drawing.drawer import Drawable, Drawer
|
||||
from norfair.filter import OptimizedKalmanFilterFactory
|
||||
@ -34,135 +35,6 @@ THRESHOLD_ACTIVE_CHECK_IOU = 0.9
|
||||
MAX_STATIONARY_HISTORY = 10
|
||||
|
||||
|
||||
class StationaryMotionClassifier:
|
||||
"""Fallback classifier to prevent false flips from stationary to active.
|
||||
|
||||
Uses appearance consistency on a fixed spatial region (historical median box)
|
||||
to detect actual movement, ignoring bounding box detection variations.
|
||||
"""
|
||||
|
||||
CROP_SIZE = 96
|
||||
NCC_KEEP_THRESHOLD = 0.90 # High correlation = keep stationary
|
||||
NCC_ACTIVE_THRESHOLD = 0.85 # Low correlation = consider active
|
||||
SHIFT_KEEP_THRESHOLD = 0.02 # Small shift = keep stationary
|
||||
SHIFT_ACTIVE_THRESHOLD = 0.04 # Large shift = consider active
|
||||
DRIFT_ACTIVE_THRESHOLD = 0.12 # Cumulative drift over 5 frames
|
||||
CHANGED_FRAMES_TO_FLIP = 2
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.anchor_crops: dict[str, np.ndarray] = {}
|
||||
self.anchor_boxes: dict[str, tuple[int, int, int, int]] = {}
|
||||
self.changed_counts: dict[str, int] = {}
|
||||
self.shift_histories: dict[str, list[float]] = {}
|
||||
|
||||
# Pre-compute Hanning window for phase correlation
|
||||
hann = np.hanning(self.CROP_SIZE).astype(np.float64)
|
||||
self._hann2d = np.outer(hann, hann)
|
||||
|
||||
def reset(self, id: str) -> None:
|
||||
if id in self.anchor_crops:
|
||||
del self.anchor_crops[id]
|
||||
if id in self.anchor_boxes:
|
||||
del self.anchor_boxes[id]
|
||||
self.changed_counts[id] = 0
|
||||
self.shift_histories[id] = []
|
||||
|
||||
def _extract_y_crop(
|
||||
self, yuv_frame: np.ndarray, box: tuple[int, int, int, int]
|
||||
) -> np.ndarray:
|
||||
"""Extract and normalize Y-plane crop from bounding box."""
|
||||
y_height = yuv_frame.shape[0] // 3 * 2
|
||||
width = yuv_frame.shape[1]
|
||||
x1 = max(0, min(width - 1, box[0]))
|
||||
y1 = max(0, min(y_height - 1, box[1]))
|
||||
x2 = max(0, min(width - 1, box[2]))
|
||||
y2 = max(0, min(y_height - 1, box[3]))
|
||||
|
||||
if x2 <= x1:
|
||||
x2 = min(width - 1, x1 + 1)
|
||||
if y2 <= y1:
|
||||
y2 = min(y_height - 1, y1 + 1)
|
||||
|
||||
# Extract Y-plane crop, resize, and blur
|
||||
y_plane = yuv_frame[0:y_height, 0:width]
|
||||
crop = y_plane[y1:y2, x1:x2]
|
||||
crop_resized = cv2.resize(
|
||||
crop, (self.CROP_SIZE, self.CROP_SIZE), interpolation=cv2.INTER_AREA
|
||||
)
|
||||
return cast(np.ndarray[Any, Any], gaussian_filter(crop_resized, sigma=0.5))
|
||||
|
||||
def ensure_anchor(
|
||||
self, id: str, yuv_frame: np.ndarray, median_box: tuple[int, int, int, int]
|
||||
) -> None:
|
||||
"""Initialize anchor crop from stable median box when object becomes stationary."""
|
||||
if id not in self.anchor_crops:
|
||||
self.anchor_boxes[id] = median_box
|
||||
self.anchor_crops[id] = self._extract_y_crop(yuv_frame, median_box)
|
||||
self.changed_counts[id] = 0
|
||||
self.shift_histories[id] = []
|
||||
|
||||
def on_active(self, id: str) -> None:
|
||||
"""Reset state when object becomes active to allow re-anchoring."""
|
||||
self.reset(id)
|
||||
|
||||
def evaluate(
|
||||
self, id: str, yuv_frame: np.ndarray, current_box: tuple[int, int, int, int]
|
||||
) -> bool:
|
||||
"""Return True to keep stationary, False to flip to active.
|
||||
|
||||
Compares the same spatial region (historical median box) across frames
|
||||
to detect actual movement, ignoring bounding box variations.
|
||||
"""
|
||||
|
||||
if id not in self.anchor_crops or id not in self.anchor_boxes:
|
||||
return True
|
||||
|
||||
# Compare same spatial region across frames
|
||||
anchor_box = self.anchor_boxes[id]
|
||||
anchor_crop = self.anchor_crops[id]
|
||||
curr_crop = self._extract_y_crop(yuv_frame, anchor_box)
|
||||
|
||||
# Compute appearance and motion metrics
|
||||
ncc = cv2.matchTemplate(curr_crop, anchor_crop, cv2.TM_CCOEFF_NORMED)[0, 0]
|
||||
a64 = anchor_crop.astype(np.float64) * self._hann2d
|
||||
c64 = curr_crop.astype(np.float64) * self._hann2d
|
||||
(shift_x, shift_y), _ = cv2.phaseCorrelate(a64, c64)
|
||||
shift_norm = float(np.hypot(shift_x, shift_y)) / float(self.CROP_SIZE)
|
||||
|
||||
# Update rolling shift history
|
||||
history = self.shift_histories.get(id, [])
|
||||
history.append(shift_norm)
|
||||
if len(history) > 5:
|
||||
history = history[-5:]
|
||||
self.shift_histories[id] = history
|
||||
drift_sum = float(sum(history))
|
||||
|
||||
# Early exit for clear stationary case
|
||||
if ncc >= self.NCC_KEEP_THRESHOLD and shift_norm < self.SHIFT_KEEP_THRESHOLD:
|
||||
self.changed_counts[id] = 0
|
||||
return True
|
||||
|
||||
# Check for movement indicators
|
||||
movement_detected = (
|
||||
ncc < self.NCC_ACTIVE_THRESHOLD
|
||||
or shift_norm >= self.SHIFT_ACTIVE_THRESHOLD
|
||||
or drift_sum >= self.DRIFT_ACTIVE_THRESHOLD
|
||||
)
|
||||
|
||||
if movement_detected:
|
||||
cnt = self.changed_counts.get(id, 0) + 1
|
||||
self.changed_counts[id] = cnt
|
||||
if (
|
||||
cnt >= self.CHANGED_FRAMES_TO_FLIP
|
||||
or drift_sum >= self.DRIFT_ACTIVE_THRESHOLD
|
||||
):
|
||||
return False
|
||||
else:
|
||||
self.changed_counts[id] = 0
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# Normalizes distance from estimate relative to object size
|
||||
# Other ideas:
|
||||
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
||||
@ -631,8 +503,9 @@ class NorfairTracker(ObjectTracker):
|
||||
detections_by_type: dict[str, list[Detection]] = {}
|
||||
yuv_frame: np.ndarray | None = None
|
||||
|
||||
if self.ptz_metrics.autotracker_enabled.value or any(
|
||||
obj[0] == "car" for obj in detections
|
||||
if self.ptz_metrics.autotracker_enabled.value or (
|
||||
self.detect_config.stationary.classifier
|
||||
and any(obj[0] == "car" for obj in detections)
|
||||
):
|
||||
yuv_frame = self.frame_manager.get(
|
||||
frame_name, self.camera_config.frame_shape_yuv
|
||||
|
||||
204
frigate/track/stationary_classifier.py
Normal file
204
frigate/track/stationary_classifier.py
Normal file
@ -0,0 +1,204 @@
|
||||
"""Tools for determining if an object is stationary."""
|
||||
|
||||
import logging
|
||||
from typing import Any, cast
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from scipy.ndimage import gaussian_filter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
THRESHOLD_KNOWN_ACTIVE_IOU = 0.2
|
||||
THRESHOLD_STATIONARY_CHECK_IOU = 0.6
|
||||
THRESHOLD_ACTIVE_CHECK_IOU = 0.9
|
||||
MAX_STATIONARY_HISTORY = 10
|
||||
|
||||
|
||||
class StationaryMotionClassifier:
|
||||
"""Fallback classifier to prevent false flips from stationary to active.
|
||||
|
||||
Uses appearance consistency on a fixed spatial region (historical median box)
|
||||
to detect actual movement, ignoring bounding box detection variations.
|
||||
"""
|
||||
|
||||
CROP_SIZE = 96
|
||||
NCC_KEEP_THRESHOLD = 0.90 # High correlation = keep stationary
|
||||
NCC_ACTIVE_THRESHOLD = 0.85 # Low correlation = consider active
|
||||
SHIFT_KEEP_THRESHOLD = 0.02 # Small shift = keep stationary
|
||||
SHIFT_ACTIVE_THRESHOLD = 0.04 # Large shift = consider active
|
||||
DRIFT_ACTIVE_THRESHOLD = 0.12 # Cumulative drift over 5 frames
|
||||
CHANGED_FRAMES_TO_FLIP = 2
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.anchor_crops: dict[str, np.ndarray] = {}
|
||||
self.anchor_boxes: dict[str, tuple[int, int, int, int]] = {}
|
||||
self.changed_counts: dict[str, int] = {}
|
||||
self.shift_histories: dict[str, list[float]] = {}
|
||||
|
||||
# Pre-compute Hanning window for phase correlation
|
||||
hann = np.hanning(self.CROP_SIZE).astype(np.float64)
|
||||
self._hann2d = np.outer(hann, hann)
|
||||
|
||||
def reset(self, id: str) -> None:
|
||||
logger.debug("StationaryMotionClassifier.reset: id=%s", id)
|
||||
if id in self.anchor_crops:
|
||||
del self.anchor_crops[id]
|
||||
if id in self.anchor_boxes:
|
||||
del self.anchor_boxes[id]
|
||||
self.changed_counts[id] = 0
|
||||
self.shift_histories[id] = []
|
||||
|
||||
def _extract_y_crop(
|
||||
self, yuv_frame: np.ndarray, box: tuple[int, int, int, int]
|
||||
) -> np.ndarray:
|
||||
"""Extract and normalize Y-plane crop from bounding box."""
|
||||
y_height = yuv_frame.shape[0] // 3 * 2
|
||||
width = yuv_frame.shape[1]
|
||||
x1 = max(0, min(width - 1, box[0]))
|
||||
y1 = max(0, min(y_height - 1, box[1]))
|
||||
x2 = max(0, min(width - 1, box[2]))
|
||||
y2 = max(0, min(y_height - 1, box[3]))
|
||||
|
||||
if x2 <= x1:
|
||||
x2 = min(width - 1, x1 + 1)
|
||||
if y2 <= y1:
|
||||
y2 = min(y_height - 1, y1 + 1)
|
||||
|
||||
# Extract Y-plane crop, resize, and blur
|
||||
y_plane = yuv_frame[0:y_height, 0:width]
|
||||
crop = y_plane[y1:y2, x1:x2]
|
||||
crop_resized = cv2.resize(
|
||||
crop, (self.CROP_SIZE, self.CROP_SIZE), interpolation=cv2.INTER_AREA
|
||||
)
|
||||
result = cast(np.ndarray[Any, Any], gaussian_filter(crop_resized, sigma=0.5))
|
||||
logger.debug(
|
||||
"_extract_y_crop: box=%s clamped=(%d,%d,%d,%d) crop_shape=%s",
|
||||
box,
|
||||
x1,
|
||||
y1,
|
||||
x2,
|
||||
y2,
|
||||
crop.shape if 'crop' in locals() else None,
|
||||
)
|
||||
return result
|
||||
|
||||
def ensure_anchor(
|
||||
self, id: str, yuv_frame: np.ndarray, median_box: tuple[int, int, int, int]
|
||||
) -> None:
|
||||
"""Initialize anchor crop from stable median box when object becomes stationary."""
|
||||
if id not in self.anchor_crops:
|
||||
self.anchor_boxes[id] = median_box
|
||||
self.anchor_crops[id] = self._extract_y_crop(yuv_frame, median_box)
|
||||
self.changed_counts[id] = 0
|
||||
self.shift_histories[id] = []
|
||||
logger.debug(
|
||||
"ensure_anchor: initialized id=%s median_box=%s crop_shape=%s",
|
||||
id,
|
||||
median_box,
|
||||
self.anchor_crops[id].shape,
|
||||
)
|
||||
|
||||
def on_active(self, id: str) -> None:
|
||||
"""Reset state when object becomes active to allow re-anchoring."""
|
||||
logger.debug("on_active: id=%s became active; resetting state", id)
|
||||
self.reset(id)
|
||||
|
||||
def evaluate(
|
||||
self, id: str, yuv_frame: np.ndarray, current_box: tuple[int, int, int, int]
|
||||
) -> bool:
|
||||
"""Return True to keep stationary, False to flip to active.
|
||||
|
||||
Compares the same spatial region (historical median box) across frames
|
||||
to detect actual movement, ignoring bounding box variations.
|
||||
"""
|
||||
|
||||
if id not in self.anchor_crops or id not in self.anchor_boxes:
|
||||
logger.debug(
|
||||
"evaluate: id=%s has no anchor; default keep stationary", id
|
||||
)
|
||||
return True
|
||||
|
||||
# Compare same spatial region across frames
|
||||
anchor_box = self.anchor_boxes[id]
|
||||
anchor_crop = self.anchor_crops[id]
|
||||
curr_crop = self._extract_y_crop(yuv_frame, anchor_box)
|
||||
|
||||
# Compute appearance and motion metrics
|
||||
ncc = cv2.matchTemplate(curr_crop, anchor_crop, cv2.TM_CCOEFF_NORMED)[0, 0]
|
||||
a64 = anchor_crop.astype(np.float64) * self._hann2d
|
||||
c64 = curr_crop.astype(np.float64) * self._hann2d
|
||||
(shift_x, shift_y), _ = cv2.phaseCorrelate(a64, c64)
|
||||
shift_norm = float(np.hypot(shift_x, shift_y)) / float(self.CROP_SIZE)
|
||||
|
||||
logger.debug(
|
||||
"evaluate: id=%s metrics ncc=%.4f shift_norm=%.4f (shift_x=%.3f, shift_y=%.3f)",
|
||||
id,
|
||||
float(ncc),
|
||||
shift_norm,
|
||||
float(shift_x),
|
||||
float(shift_y),
|
||||
)
|
||||
|
||||
# Update rolling shift history
|
||||
history = self.shift_histories.get(id, [])
|
||||
history.append(shift_norm)
|
||||
if len(history) > 5:
|
||||
history = history[-5:]
|
||||
self.shift_histories[id] = history
|
||||
drift_sum = float(sum(history))
|
||||
|
||||
logger.debug(
|
||||
"evaluate: id=%s history_len=%d last_shift=%.4f drift_sum=%.4f",
|
||||
id,
|
||||
len(history),
|
||||
history[-1] if history else -1.0,
|
||||
drift_sum,
|
||||
)
|
||||
|
||||
# Early exit for clear stationary case
|
||||
if ncc >= self.NCC_KEEP_THRESHOLD and shift_norm < self.SHIFT_KEEP_THRESHOLD:
|
||||
self.changed_counts[id] = 0
|
||||
logger.debug(
|
||||
"evaluate: id=%s early-stationary keep=True (ncc>=%.2f and shift<%.2f)",
|
||||
id,
|
||||
self.NCC_KEEP_THRESHOLD,
|
||||
self.SHIFT_KEEP_THRESHOLD,
|
||||
)
|
||||
return True
|
||||
|
||||
# Check for movement indicators
|
||||
movement_detected = (
|
||||
ncc < self.NCC_ACTIVE_THRESHOLD
|
||||
or shift_norm >= self.SHIFT_ACTIVE_THRESHOLD
|
||||
or drift_sum >= self.DRIFT_ACTIVE_THRESHOLD
|
||||
)
|
||||
|
||||
if movement_detected:
|
||||
cnt = self.changed_counts.get(id, 0) + 1
|
||||
self.changed_counts[id] = cnt
|
||||
if (
|
||||
cnt >= self.CHANGED_FRAMES_TO_FLIP
|
||||
or drift_sum >= self.DRIFT_ACTIVE_THRESHOLD
|
||||
):
|
||||
logger.debug(
|
||||
"evaluate: id=%s flip_to_active=True cnt=%d drift_sum=%.4f thresholds(changed>=%d drift>=%.2f)",
|
||||
id,
|
||||
cnt,
|
||||
drift_sum,
|
||||
self.CHANGED_FRAMES_TO_FLIP,
|
||||
self.DRIFT_ACTIVE_THRESHOLD,
|
||||
)
|
||||
return False
|
||||
logger.debug(
|
||||
"evaluate: id=%s movement_detected cnt=%d keep_until_cnt>=%d",
|
||||
id,
|
||||
cnt,
|
||||
self.CHANGED_FRAMES_TO_FLIP,
|
||||
)
|
||||
else:
|
||||
self.changed_counts[id] = 0
|
||||
logger.debug("evaluate: id=%s no_movement keep=True", id)
|
||||
|
||||
return True
|
||||
Loading…
Reference in New Issue
Block a user