mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-05 10:45:21 +03:00
implement norfair tracker
This commit is contained in:
parent
7ec8a91019
commit
9a8d4e9ca1
263
frigate/track/norfair_tracker.py
Normal file
263
frigate/track/norfair_tracker.py
Normal file
@ -0,0 +1,263 @@
|
||||
from collections import defaultdict
|
||||
import random
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.util import intersection_over_union
|
||||
from norfair import Detection, Tracker, Drawable, draw_boxes
|
||||
from norfair.drawing.drawer import Drawer
|
||||
|
||||
|
||||
# Normalizes distance from estimate relative to object size
|
||||
# Other ideas:
|
||||
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
||||
# - could be variable based on time since last_detection
|
||||
# - include estimated velocity in the distance (car driving by of a parked car)
|
||||
# - include some visual similarity factor in the distance for occlusions
|
||||
def frigate_distance(detection: Detection, tracked_object) -> float:
|
||||
# calculate distances and normalize it by width and height of previous detection
|
||||
ld = tracked_object.last_detection
|
||||
width = ld.points[1][0] - ld.points[0][0]
|
||||
height = ld.points[1][1] - ld.points[0][1]
|
||||
difference = (detection.points - tracked_object.estimate).astype(float)
|
||||
difference[:, 0] /= width
|
||||
difference[:, 1] /= height
|
||||
|
||||
# calculate euclidean distance and average
|
||||
return np.linalg.norm(difference, axis=1).mean()
|
||||
|
||||
|
||||
class NorfairTracker(ObjectTracker):
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.positions = {}
|
||||
self.max_disappeared = config.max_disappeared
|
||||
self.detect_config = config
|
||||
self.track_id_map = {}
|
||||
# TODO: could also initialize a tracker per object class if there
|
||||
# was a good reason to have different distance calculations
|
||||
self.tracker = Tracker(
|
||||
distance_function=frigate_distance,
|
||||
# distance is relative to the size of the last
|
||||
# detection
|
||||
distance_threshold=4.0,
|
||||
initialization_delay=0,
|
||||
hit_counter_max=self.max_disappeared,
|
||||
)
|
||||
|
||||
def register(self, track_id, obj):
|
||||
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
id = f"{obj['frame_time']}-{rand_id}"
|
||||
self.track_id_map[track_id] = id
|
||||
obj["id"] = id
|
||||
obj["start_time"] = obj["frame_time"]
|
||||
obj["motionless_count"] = 0
|
||||
obj["position_changes"] = 0
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
self.positions[id] = {
|
||||
"xmins": [],
|
||||
"ymins": [],
|
||||
"xmaxs": [],
|
||||
"ymaxs": [],
|
||||
"xmin": 0,
|
||||
"ymin": 0,
|
||||
"xmax": self.detect_config.width,
|
||||
"ymax": self.detect_config.height,
|
||||
}
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
del self.disappeared[id]
|
||||
|
||||
# tracks the current position of the object based on the last N bounding boxes
|
||||
# returns False if the object has moved outside its previous position
|
||||
def update_position(self, id, box):
|
||||
position = self.positions[id]
|
||||
position_box = (
|
||||
position["xmin"],
|
||||
position["ymin"],
|
||||
position["xmax"],
|
||||
position["ymax"],
|
||||
)
|
||||
|
||||
xmin, ymin, xmax, ymax = box
|
||||
|
||||
iou = intersection_over_union(position_box, box)
|
||||
|
||||
# if the iou drops below the threshold
|
||||
# assume the object has moved to a new position and reset the computed box
|
||||
if iou < 0.6:
|
||||
self.positions[id] = {
|
||||
"xmins": [xmin],
|
||||
"ymins": [ymin],
|
||||
"xmaxs": [xmax],
|
||||
"ymaxs": [ymax],
|
||||
"xmin": xmin,
|
||||
"ymin": ymin,
|
||||
"xmax": xmax,
|
||||
"ymax": ymax,
|
||||
}
|
||||
return False
|
||||
|
||||
# if there are less than 10 entries for the position, add the bounding box
|
||||
# and recompute the position box
|
||||
if len(position["xmins"]) < 10:
|
||||
position["xmins"].append(xmin)
|
||||
position["ymins"].append(ymin)
|
||||
position["xmaxs"].append(xmax)
|
||||
position["ymaxs"].append(ymax)
|
||||
# by using percentiles here, we hopefully remove outliers
|
||||
position["xmin"] = np.percentile(position["xmins"], 15)
|
||||
position["ymin"] = np.percentile(position["ymins"], 15)
|
||||
position["xmax"] = np.percentile(position["xmaxs"], 85)
|
||||
position["ymax"] = np.percentile(position["ymaxs"], 85)
|
||||
|
||||
return True
|
||||
|
||||
def is_expired(self, id):
|
||||
obj = self.tracked_objects[id]
|
||||
# get the max frames for this label type or the default
|
||||
max_frames = self.detect_config.stationary.max_frames.objects.get(
|
||||
obj["label"], self.detect_config.stationary.max_frames.default
|
||||
)
|
||||
|
||||
# if there is no max_frames for this label type, continue
|
||||
if max_frames is None:
|
||||
return False
|
||||
|
||||
# if the object has exceeded the max_frames setting, deregister
|
||||
if (
|
||||
obj["motionless_count"] - self.detect_config.stationary.threshold
|
||||
> max_frames
|
||||
):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def update(self, track_id, obj):
|
||||
id = self.track_id_map[track_id]
|
||||
self.disappeared[id] = 0
|
||||
# update the motionless count if the object has not moved to a new position
|
||||
if self.update_position(id, obj["box"]):
|
||||
self.tracked_objects[id]["motionless_count"] += 1
|
||||
if self.is_expired(id):
|
||||
self.deregister(id)
|
||||
return
|
||||
else:
|
||||
# register the first position change and then only increment if
|
||||
# the object was previously stationary
|
||||
if (
|
||||
self.tracked_objects[id]["position_changes"] == 0
|
||||
or self.tracked_objects[id]["motionless_count"]
|
||||
>= self.detect_config.stationary.threshold
|
||||
):
|
||||
self.tracked_objects[id]["position_changes"] += 1
|
||||
self.tracked_objects[id]["motionless_count"] = 0
|
||||
|
||||
self.tracked_objects[id].update(obj)
|
||||
|
||||
def update_frame_times(self, frame_time):
|
||||
# if the object was there in the last frame, assume it's still there
|
||||
detections = [
|
||||
(
|
||||
obj["label"],
|
||||
obj["score"],
|
||||
obj["box"],
|
||||
obj["area"],
|
||||
obj["ratio"],
|
||||
obj["region"],
|
||||
)
|
||||
for id, obj in self.tracked_objects.items()
|
||||
if self.disappeared[id] == 0
|
||||
]
|
||||
self.match_and_update(frame_time, detections=detections)
|
||||
|
||||
def match_and_update(self, frame_time, detections):
|
||||
norfair_detections = []
|
||||
|
||||
for obj in detections:
|
||||
# centroid is used for other things downstream
|
||||
centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
|
||||
centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
|
||||
|
||||
# track based on top,left and bottom,right corners instead of centroid
|
||||
points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
|
||||
|
||||
norfair_detections.append(
|
||||
Detection(
|
||||
points=points,
|
||||
label=obj[0],
|
||||
data={
|
||||
"label": obj[0],
|
||||
"score": obj[1],
|
||||
"box": obj[2],
|
||||
"area": obj[3],
|
||||
"ratio": obj[4],
|
||||
"region": obj[5],
|
||||
"frame_time": frame_time,
|
||||
"centroid": (centroid_x, centroid_y),
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
tracked_objects = self.tracker.update(detections=norfair_detections)
|
||||
|
||||
# update or create new tracks
|
||||
active_ids = []
|
||||
for t in tracked_objects:
|
||||
active_ids.append(t.global_id)
|
||||
if not t.global_id in self.track_id_map:
|
||||
self.register(t.global_id, t.last_detection.data)
|
||||
# if there wasn't a detection in this frame, increment disappeared
|
||||
elif t.last_detection.data["frame_time"] != frame_time:
|
||||
id = self.track_id_map[t.global_id]
|
||||
self.disappeared[id] += 1
|
||||
# else update it
|
||||
else:
|
||||
self.update(t.global_id, t.last_detection.data)
|
||||
|
||||
# clear expired tracks
|
||||
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
||||
for e_id in expired_ids:
|
||||
self.deregister(self.track_id_map[e_id])
|
||||
del self.track_id_map[e_id]
|
||||
|
||||
def debug_draw(self, frame, frame_time):
|
||||
active_detections = [
|
||||
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||
for obj in self.tracker.tracked_objects
|
||||
if obj.last_detection.data["frame_time"] == frame_time
|
||||
]
|
||||
missing_detections = [
|
||||
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||
for obj in self.tracker.tracked_objects
|
||||
if obj.last_detection.data["frame_time"] != frame_time
|
||||
]
|
||||
# draw the estimated bounding box
|
||||
draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
|
||||
# draw the detections that were detected in the current frame
|
||||
draw_boxes(frame, active_detections, color="blue", draw_ids=True)
|
||||
# draw the detections that are missing in the current frame
|
||||
draw_boxes(frame, missing_detections, color="red", draw_ids=True)
|
||||
|
||||
# draw the distance calculation for the last detection
|
||||
# estimate vs detection
|
||||
for obj in self.tracker.tracked_objects:
|
||||
ld = obj.last_detection
|
||||
# bottom right
|
||||
text_anchor = (
|
||||
ld.points[1, 0],
|
||||
ld.points[1, 1],
|
||||
)
|
||||
frame = Drawer.text(
|
||||
frame,
|
||||
f"{obj.id}: {str(obj.last_distance)}",
|
||||
position=text_anchor,
|
||||
size=None,
|
||||
color=(255, 0, 0),
|
||||
thickness=None,
|
||||
)
|
||||
@ -21,6 +21,7 @@ from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.track.centroid_tracker import CentroidTracker
|
||||
from frigate.track.norfair_tracker import NorfairTracker
|
||||
from frigate.track.sort_tracker import SortTracker
|
||||
from frigate.util import (
|
||||
EventsPerSecond,
|
||||
@ -474,7 +475,7 @@ def track_camera(
|
||||
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
||||
)
|
||||
|
||||
object_tracker = SortTracker(config.detect)
|
||||
object_tracker = NorfairTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
@ -849,6 +850,17 @@ def process_frames(
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
|
||||
# debug tracking by writing frames
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
cv2.COLOR_YUV2BGR_I420,
|
||||
)
|
||||
object_tracker.debug_draw(bgr_frame, frame_time)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
||||
)
|
||||
|
||||
# add to the queue if not full
|
||||
if detected_objects_queue.full():
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
|
||||
@ -20,6 +20,7 @@ requests == 2.30.*
|
||||
types-requests == 2.28.*
|
||||
scipy == 1.10.*
|
||||
similari-trackers-rs == 0.26.*
|
||||
norfair == 2.2.*
|
||||
setproctitle == 1.3.*
|
||||
ws4py == 0.5.*
|
||||
# Openvino Library - Custom built with MYRIAD support
|
||||
|
||||
Loading…
Reference in New Issue
Block a user