mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-11 13:45:25 +03:00
Add support for TensorRT v10 (multiple api calls have changed)
This commit is contained in:
parent
1c9626ecff
commit
9a642086f9
@ -6,6 +6,7 @@ import numpy as np
|
|||||||
try:
|
try:
|
||||||
import tensorrt as trt
|
import tensorrt as trt
|
||||||
from cuda import cuda
|
from cuda import cuda
|
||||||
|
TRT_VERSION=int(trt.__version__[0:trt.__version__.find(".")])
|
||||||
|
|
||||||
TRT_SUPPORT = True
|
TRT_SUPPORT = True
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
@ -91,6 +92,7 @@ class TensorRtDetector(DetectionApi):
|
|||||||
def _get_input_shape(self):
|
def _get_input_shape(self):
|
||||||
"""Get input shape of the TensorRT YOLO engine."""
|
"""Get input shape of the TensorRT YOLO engine."""
|
||||||
binding = self.engine[0]
|
binding = self.engine[0]
|
||||||
|
if TRT_VERSION < 10:
|
||||||
assert self.engine.binding_is_input(binding)
|
assert self.engine.binding_is_input(binding)
|
||||||
binding_dims = self.engine.get_binding_shape(binding)
|
binding_dims = self.engine.get_binding_shape(binding)
|
||||||
if len(binding_dims) == 4:
|
if len(binding_dims) == 4:
|
||||||
@ -107,6 +109,23 @@ class TensorRtDetector(DetectionApi):
|
|||||||
raise ValueError(
|
raise ValueError(
|
||||||
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
assert binding == "input"
|
||||||
|
binding_dims = self.engine.get_tensor_shape("input")
|
||||||
|
if len(binding_dims) == 4:
|
||||||
|
return (
|
||||||
|
tuple(binding_dims[2:]),
|
||||||
|
trt.nptype(self.engine.get_tensor_dtype(binding)),
|
||||||
|
)
|
||||||
|
elif len(binding_dims) == 3:
|
||||||
|
return (
|
||||||
|
tuple(binding_dims[1:]),
|
||||||
|
trt.nptype(self.engine.get_tensor_dtype(binding)),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
||||||
|
)
|
||||||
|
|
||||||
def _allocate_buffers(self):
|
def _allocate_buffers(self):
|
||||||
"""Allocates all host/device in/out buffers required for an engine."""
|
"""Allocates all host/device in/out buffers required for an engine."""
|
||||||
@ -115,6 +134,7 @@ class TensorRtDetector(DetectionApi):
|
|||||||
bindings = []
|
bindings = []
|
||||||
output_idx = 0
|
output_idx = 0
|
||||||
for binding in self.engine:
|
for binding in self.engine:
|
||||||
|
if TRT_VERSION < 10:
|
||||||
binding_dims = self.engine.get_binding_shape(binding)
|
binding_dims = self.engine.get_binding_shape(binding)
|
||||||
if len(binding_dims) == 4:
|
if len(binding_dims) == 4:
|
||||||
# explicit batch case (TensorRT 7+)
|
# explicit batch case (TensorRT 7+)
|
||||||
@ -150,6 +170,42 @@ class TensorRtDetector(DetectionApi):
|
|||||||
logger.debug(f"Output has Shape {binding_dims}")
|
logger.debug(f"Output has Shape {binding_dims}")
|
||||||
outputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
outputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
||||||
output_idx += 1
|
output_idx += 1
|
||||||
|
else:
|
||||||
|
binding_dims = self.engine.get_tensor_shape(binding)
|
||||||
|
if len(binding_dims) == 4:
|
||||||
|
# explicit batch case (TensorRT 7+)
|
||||||
|
size = trt.volume(binding_dims)
|
||||||
|
elif len(binding_dims) == 3:
|
||||||
|
# implicit batch case (TensorRT 6 or older)
|
||||||
|
size = trt.volume(binding_dims) * self.engine.max_batch_size
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
||||||
|
)
|
||||||
|
nbytes = size * self.engine.get_tensor_dtype(binding).itemsize
|
||||||
|
# Allocate host and device buffers
|
||||||
|
err, host_mem = cuda.cuMemHostAlloc(
|
||||||
|
nbytes, Flags=cuda.CU_MEMHOSTALLOC_DEVICEMAP
|
||||||
|
)
|
||||||
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAllocHost returned {err}"
|
||||||
|
logger.debug(
|
||||||
|
f"Allocated Tensor Binding {binding} Memory {nbytes} Bytes ({size} * {self.engine.get_tensor_dtype(binding)})"
|
||||||
|
)
|
||||||
|
err, device_mem = cuda.cuMemAlloc(nbytes)
|
||||||
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAlloc returned {err}"
|
||||||
|
# Append the device buffer to device bindings.
|
||||||
|
bindings.append(int(device_mem))
|
||||||
|
# Append to the appropriate list.
|
||||||
|
if binding == "input":
|
||||||
|
logger.debug(f"Input has Shape {binding_dims}")
|
||||||
|
inputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
||||||
|
else:
|
||||||
|
# each grid has 3 anchors, each anchor generates a detection
|
||||||
|
# output of 7 float32 values
|
||||||
|
assert size % 7 == 0, f"output size was {size}"
|
||||||
|
logger.debug(f"Output has Shape {binding_dims}")
|
||||||
|
outputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
||||||
|
output_idx += 1
|
||||||
assert len(inputs) == 1, f"inputs len was {len(inputs)}"
|
assert len(inputs) == 1, f"inputs len was {len(inputs)}"
|
||||||
assert len(outputs) == 1, f"output len was {len(outputs)}"
|
assert len(outputs) == 1, f"output len was {len(outputs)}"
|
||||||
return inputs, outputs, bindings
|
return inputs, outputs, bindings
|
||||||
@ -170,10 +226,16 @@ class TensorRtDetector(DetectionApi):
|
|||||||
]
|
]
|
||||||
|
|
||||||
# Run inference.
|
# Run inference.
|
||||||
|
if TRT_VERSION < 10:
|
||||||
if not self.context.execute_async_v2(
|
if not self.context.execute_async_v2(
|
||||||
bindings=self.bindings, stream_handle=self.stream
|
bindings=self.bindings, stream_handle=self.stream
|
||||||
):
|
):
|
||||||
logger.warn("Execute returned false")
|
logger.warn("Execute returned false")
|
||||||
|
else:
|
||||||
|
if not self.context.execute_v2(
|
||||||
|
self.bindings
|
||||||
|
):
|
||||||
|
logger.warn("Execute returned false")
|
||||||
|
|
||||||
# Transfer predictions back from the GPU.
|
# Transfer predictions back from the GPU.
|
||||||
[
|
[
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user