mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 05:24:11 +03:00
Change the default detection model to YOLOv9
This commit is contained in:
parent
bb45483e9e
commit
91e17e12b7
@ -13,7 +13,7 @@ ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
# Install axmodels
|
||||
RUN mkdir -p /axmodels \
|
||||
&& wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/yolov5s_320.axmodel -O /axmodels/yolov5s_320.axmodel
|
||||
&& wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/yolov9_tiny_u16_npu3_bgr_320x320_nhwc.axmodel -O /axmodels/yolov9_320.axmodel
|
||||
|
||||
# Install axpyengine
|
||||
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl
|
||||
|
||||
@ -1119,9 +1119,9 @@ See the [installation docs](../frigate/installation.md#axera) for information on
|
||||
|
||||
When configuring the AXEngine detector, you have to specify the model name.
|
||||
|
||||
#### yolov5s
|
||||
#### yolov9
|
||||
|
||||
A yolov5s model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
|
||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||
|
||||
@ -1131,7 +1131,7 @@ detectors: # required
|
||||
type: axengine # required
|
||||
|
||||
model: # required
|
||||
path: yolov5s_320 # required
|
||||
path: yolov9_320 # required
|
||||
width: 320 # required
|
||||
height: 320 # required
|
||||
tensor_format: bgr # required
|
||||
|
||||
@ -112,11 +112,11 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
### AXERA
|
||||
|
||||
- **AXEngine** Default model is **yolov5s_320**
|
||||
- **AXEngine** Default model is **yolov9**
|
||||
|
||||
| Name | AXERA AX650N/AX8850N Inference Time |
|
||||
| ---------------- | ----------------------------------- |
|
||||
| yolov5s_320 | ~ 1.676 ms |
|
||||
| yolov9 | ~ 1.012 ms |
|
||||
|
||||
### Hailo-8
|
||||
|
||||
|
||||
@ -20,14 +20,9 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "axengine"
|
||||
|
||||
NUM_CLASSES = 80
|
||||
CONF_THRESH = 0.65
|
||||
IOU_THRESH = 0.45
|
||||
STRIDES = [8, 16, 32]
|
||||
ANCHORS = [
|
||||
[10, 13, 16, 30, 33, 23],
|
||||
[30, 61, 62, 45, 59, 119],
|
||||
[116, 90, 156, 198, 373, 326],
|
||||
]
|
||||
|
||||
class AxengineDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
@ -39,160 +34,97 @@ class Axengine(DetectionApi):
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
model_path = config.model.path or "yolov5s_320"
|
||||
model_path = config.model.path or "yolov9_320"
|
||||
self.session = axe.InferenceSession(f"/axmodels/{model_path}.axmodel")
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
|
||||
def xywh2xyxy(self, x):
|
||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
def bboxes_iou(self, boxes1, boxes2):
|
||||
"""calculate the Intersection Over Union value"""
|
||||
boxes1 = np.array(boxes1)
|
||||
boxes2 = np.array(boxes2)
|
||||
|
||||
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (
|
||||
boxes1[..., 3] - boxes1[..., 1]
|
||||
)
|
||||
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (
|
||||
boxes2[..., 3] - boxes2[..., 1]
|
||||
)
|
||||
|
||||
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
|
||||
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
|
||||
|
||||
inter_section = np.maximum(right_down - left_up, 0.0)
|
||||
inter_area = inter_section[..., 0] * inter_section[..., 1]
|
||||
union_area = boxes1_area + boxes2_area - inter_area
|
||||
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)
|
||||
|
||||
return ious
|
||||
|
||||
def nms(self, proposals, iou_threshold, conf_threshold, multi_label=False):
|
||||
def post_processing(self, raw_output, input_shape):
|
||||
"""
|
||||
:param bboxes: (xmin, ymin, xmax, ymax, score, class)
|
||||
|
||||
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
|
||||
https://github.com/bharatsingh430/soft-nms
|
||||
raw_output: [1, 1, 84, 8400]
|
||||
Returns: numpy array of shape (20, 6) [class_id, score, y_min, x_min, y_max, x_max] in normalized coordinates
|
||||
"""
|
||||
xc = proposals[..., 4] > conf_threshold
|
||||
proposals = proposals[xc]
|
||||
proposals[:, 5:] *= proposals[:, 4:5]
|
||||
bboxes = self.xywh2xyxy(proposals[:, :4])
|
||||
if multi_label:
|
||||
mask = proposals[:, 5:] > conf_threshold
|
||||
nonzero_indices = np.argwhere(mask)
|
||||
if nonzero_indices.size < 0:
|
||||
return
|
||||
i, j = nonzero_indices.T
|
||||
bboxes = np.hstack(
|
||||
(bboxes[i], proposals[i, j + 5][:, None], j[:, None].astype(float))
|
||||
)
|
||||
else:
|
||||
confidences = proposals[:, 5:]
|
||||
conf = confidences.max(axis=1, keepdims=True)
|
||||
j = confidences.argmax(axis=1)[:, None]
|
||||
|
||||
new_x_parts = [bboxes, conf, j.astype(float)]
|
||||
bboxes = np.hstack(new_x_parts)
|
||||
|
||||
mask = conf.reshape(-1) > conf_threshold
|
||||
bboxes = bboxes[mask]
|
||||
|
||||
classes_in_img = list(set(bboxes[:, 5]))
|
||||
bboxes = bboxes[bboxes[:, 4].argsort()[::-1][:300]]
|
||||
best_bboxes = []
|
||||
|
||||
for cls in classes_in_img:
|
||||
cls_mask = bboxes[:, 5] == cls
|
||||
cls_bboxes = bboxes[cls_mask]
|
||||
|
||||
while len(cls_bboxes) > 0:
|
||||
max_ind = np.argmax(cls_bboxes[:, 4])
|
||||
best_bbox = cls_bboxes[max_ind]
|
||||
best_bboxes.append(best_bbox)
|
||||
cls_bboxes = np.concatenate(
|
||||
[cls_bboxes[:max_ind], cls_bboxes[max_ind + 1 :]]
|
||||
)
|
||||
iou = self.bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
|
||||
weight = np.ones((len(iou),), dtype=np.float32)
|
||||
|
||||
iou_mask = iou > iou_threshold
|
||||
weight[iou_mask] = 0.0
|
||||
|
||||
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
|
||||
score_mask = cls_bboxes[:, 4] > 0.0
|
||||
cls_bboxes = cls_bboxes[score_mask]
|
||||
|
||||
if len(best_bboxes) == 0:
|
||||
return np.empty((0, 6))
|
||||
|
||||
best_bboxes = np.vstack(best_bboxes)
|
||||
best_bboxes = best_bboxes[best_bboxes[:, 4].argsort()[::-1]]
|
||||
return best_bboxes
|
||||
|
||||
def sigmoid(self, x):
|
||||
return np.clip(0.2 * x + 0.5, 0, 1)
|
||||
|
||||
def gen_proposals(self, outputs):
|
||||
new_pred = []
|
||||
anchor_grid = np.array(ANCHORS).reshape(-1, 1, 1, 3, 2)
|
||||
for i, pred in enumerate(outputs):
|
||||
pred = self.sigmoid(pred)
|
||||
n, h, w, c = pred.shape
|
||||
|
||||
pred = pred.reshape(n, h, w, 3, 85)
|
||||
conv_shape = pred.shape
|
||||
output_size = conv_shape[1]
|
||||
conv_raw_dxdy = pred[..., 0:2]
|
||||
conv_raw_dwdh = pred[..., 2:4]
|
||||
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
|
||||
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)
|
||||
|
||||
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
|
||||
xy_grid = xy_grid.astype(np.float32)
|
||||
pred_xy = (conv_raw_dxdy * 2.0 - 0.5 + xy_grid) * STRIDES[i]
|
||||
pred_wh = (conv_raw_dwdh * 2) ** 2 * anchor_grid[i]
|
||||
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)
|
||||
|
||||
new_pred.append(np.reshape(pred, (-1, np.shape(pred)[-1])))
|
||||
|
||||
return np.concatenate(new_pred, axis=0)
|
||||
|
||||
def post_processing(self, outputs, input_shape, threshold=0.3):
|
||||
proposals = self.gen_proposals(outputs)
|
||||
bboxes = self.nms(proposals, IOU_THRESH, CONF_THRESH, multi_label=True)
|
||||
|
||||
"""
|
||||
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
|
||||
"""
|
||||
|
||||
results = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, bbox in enumerate(bboxes):
|
||||
try:
|
||||
if not isinstance(raw_output, np.ndarray):
|
||||
raw_output = np.array(raw_output)
|
||||
|
||||
if len(raw_output.shape) == 4 and raw_output.shape[0] == 1 and raw_output.shape[1] == 1:
|
||||
raw_output = raw_output.squeeze(1)
|
||||
|
||||
pred = raw_output[0].transpose(1, 0)
|
||||
|
||||
bxy = pred[:, :2]
|
||||
bwh = pred[:, 2:4]
|
||||
cls = pred[:, 4:4 + NUM_CLASSES]
|
||||
|
||||
cx = bxy[:, 0]
|
||||
cy = bxy[:, 1]
|
||||
w = bwh[:, 0]
|
||||
h = bwh[:, 1]
|
||||
|
||||
x_min = cx - w / 2
|
||||
y_min = cy - h / 2
|
||||
x_max = cx + w / 2
|
||||
y_max = cy + h / 2
|
||||
|
||||
scores = np.max(cls, axis=1)
|
||||
class_ids = np.argmax(cls, axis=1)
|
||||
|
||||
mask = scores >= CONF_THRESH
|
||||
boxes = np.stack([x_min, y_min, x_max, y_max], axis=1)[mask]
|
||||
scores = scores[mask]
|
||||
class_ids = class_ids[mask]
|
||||
|
||||
if len(boxes) == 0:
|
||||
return results
|
||||
|
||||
boxes_nms = np.stack([x_min[mask], y_min[mask],
|
||||
x_max[mask] - x_min[mask],
|
||||
y_max[mask] - y_min[mask]], axis=1)
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(
|
||||
boxes_nms.tolist(),
|
||||
scores.tolist(),
|
||||
score_threshold=CONF_THRESH,
|
||||
nms_threshold=IOU_THRESH
|
||||
)
|
||||
|
||||
if len(indices) == 0:
|
||||
return results
|
||||
|
||||
indices = indices.flatten()
|
||||
|
||||
sorted_indices = sorted(indices, key=lambda idx: scores[idx], reverse=True)
|
||||
indices = sorted_indices
|
||||
|
||||
valid_detections = 0
|
||||
for i, idx in enumerate(indices):
|
||||
if i >= 20:
|
||||
break
|
||||
coor = np.array(bbox[:4], dtype=np.int32)
|
||||
score = bbox[4]
|
||||
if score < threshold:
|
||||
|
||||
x_min_val, y_min_val, x_max_val, y_max_val = boxes[idx]
|
||||
score = scores[idx]
|
||||
class_id = class_ids[idx]
|
||||
|
||||
if score < CONF_THRESH:
|
||||
continue
|
||||
class_ind = int(bbox[5])
|
||||
results[i] = [
|
||||
class_ind,
|
||||
score,
|
||||
max(0, bbox[1]) / input_shape[1],
|
||||
max(0, bbox[0]) / input_shape[0],
|
||||
min(1, bbox[3] / input_shape[1]),
|
||||
min(1, bbox[2] / input_shape[0]),
|
||||
|
||||
results[valid_detections] = [
|
||||
float(class_id), # class_id
|
||||
float(score), # score
|
||||
max(0, y_min_val) / input_shape[0], # y_min
|
||||
max(0, x_min_val) / input_shape[1], # x_min
|
||||
min(1, y_max_val / input_shape[0]), # y_max
|
||||
min(1, x_max_val / input_shape[1]) # x_max
|
||||
]
|
||||
valid_detections += 1
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
return results
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
|
||||
Loading…
Reference in New Issue
Block a user