Change the default detection model to YOLOv9

This commit is contained in:
shizhicheng 2025-11-09 13:21:17 +00:00
parent bb45483e9e
commit 91e17e12b7
4 changed files with 90 additions and 158 deletions

View File

@ -13,7 +13,7 @@ ARG PIP_BREAK_SYSTEM_PACKAGES
# Install axmodels # Install axmodels
RUN mkdir -p /axmodels \ RUN mkdir -p /axmodels \
&& wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/yolov5s_320.axmodel -O /axmodels/yolov5s_320.axmodel && wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/yolov9_tiny_u16_npu3_bgr_320x320_nhwc.axmodel -O /axmodels/yolov9_320.axmodel
# Install axpyengine # Install axpyengine
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl

View File

@ -1119,9 +1119,9 @@ See the [installation docs](../frigate/installation.md#axera) for information on
When configuring the AXEngine detector, you have to specify the model name. When configuring the AXEngine detector, you have to specify the model name.
#### yolov5s #### yolov9
A yolov5s model is provided in the container at /axmodels and is used by this detector type by default. A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
Use the model configuration shown below when using the axengine detector with the default axmodel: Use the model configuration shown below when using the axengine detector with the default axmodel:
@ -1131,7 +1131,7 @@ detectors: # required
type: axengine # required type: axengine # required
model: # required model: # required
path: yolov5s_320 # required path: yolov9_320 # required
width: 320 # required width: 320 # required
height: 320 # required height: 320 # required
tensor_format: bgr # required tensor_format: bgr # required

View File

@ -112,11 +112,11 @@ Frigate supports multiple different detectors that work on different types of ha
### AXERA ### AXERA
- **AXEngine** Default model is **yolov5s_320** - **AXEngine** Default model is **yolov9**
| Name | AXERA AX650N/AX8850N Inference Time | | Name | AXERA AX650N/AX8850N Inference Time |
| ---------------- | ----------------------------------- | | ---------------- | ----------------------------------- |
| yolov5s_320 | ~ 1.676 ms | | yolov9 | ~ 1.012 ms |
### Hailo-8 ### Hailo-8

View File

@ -20,14 +20,9 @@ logger = logging.getLogger(__name__)
DETECTOR_KEY = "axengine" DETECTOR_KEY = "axengine"
NUM_CLASSES = 80
CONF_THRESH = 0.65 CONF_THRESH = 0.65
IOU_THRESH = 0.45 IOU_THRESH = 0.45
STRIDES = [8, 16, 32]
ANCHORS = [
[10, 13, 16, 30, 33, 23],
[30, 61, 62, 45, 59, 119],
[116, 90, 156, 198, 373, 326],
]
class AxengineDetectorConfig(BaseDetectorConfig): class AxengineDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY] type: Literal[DETECTOR_KEY]
@ -39,160 +34,97 @@ class Axengine(DetectionApi):
super().__init__(config) super().__init__(config)
self.height = config.model.height self.height = config.model.height
self.width = config.model.width self.width = config.model.width
model_path = config.model.path or "yolov5s_320" model_path = config.model.path or "yolov9_320"
self.session = axe.InferenceSession(f"/axmodels/{model_path}.axmodel") self.session = axe.InferenceSession(f"/axmodels/{model_path}.axmodel")
def __del__(self): def __del__(self):
pass pass
def xywh2xyxy(self, x): def post_processing(self, raw_output, input_shape):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def bboxes_iou(self, boxes1, boxes2):
"""calculate the Intersection Over Union value"""
boxes1 = np.array(boxes1)
boxes2 = np.array(boxes2)
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (
boxes1[..., 3] - boxes1[..., 1]
)
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (
boxes2[..., 3] - boxes2[..., 1]
)
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = np.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)
return ious
def nms(self, proposals, iou_threshold, conf_threshold, multi_label=False):
""" """
:param bboxes: (xmin, ymin, xmax, ymax, score, class) raw_output: [1, 1, 84, 8400]
Returns: numpy array of shape (20, 6) [class_id, score, y_min, x_min, y_max, x_max] in normalized coordinates
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
https://github.com/bharatsingh430/soft-nms
""" """
xc = proposals[..., 4] > conf_threshold
proposals = proposals[xc]
proposals[:, 5:] *= proposals[:, 4:5]
bboxes = self.xywh2xyxy(proposals[:, :4])
if multi_label:
mask = proposals[:, 5:] > conf_threshold
nonzero_indices = np.argwhere(mask)
if nonzero_indices.size < 0:
return
i, j = nonzero_indices.T
bboxes = np.hstack(
(bboxes[i], proposals[i, j + 5][:, None], j[:, None].astype(float))
)
else:
confidences = proposals[:, 5:]
conf = confidences.max(axis=1, keepdims=True)
j = confidences.argmax(axis=1)[:, None]
new_x_parts = [bboxes, conf, j.astype(float)]
bboxes = np.hstack(new_x_parts)
mask = conf.reshape(-1) > conf_threshold
bboxes = bboxes[mask]
classes_in_img = list(set(bboxes[:, 5]))
bboxes = bboxes[bboxes[:, 4].argsort()[::-1][:300]]
best_bboxes = []
for cls in classes_in_img:
cls_mask = bboxes[:, 5] == cls
cls_bboxes = bboxes[cls_mask]
while len(cls_bboxes) > 0:
max_ind = np.argmax(cls_bboxes[:, 4])
best_bbox = cls_bboxes[max_ind]
best_bboxes.append(best_bbox)
cls_bboxes = np.concatenate(
[cls_bboxes[:max_ind], cls_bboxes[max_ind + 1 :]]
)
iou = self.bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
weight = np.ones((len(iou),), dtype=np.float32)
iou_mask = iou > iou_threshold
weight[iou_mask] = 0.0
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
score_mask = cls_bboxes[:, 4] > 0.0
cls_bboxes = cls_bboxes[score_mask]
if len(best_bboxes) == 0:
return np.empty((0, 6))
best_bboxes = np.vstack(best_bboxes)
best_bboxes = best_bboxes[best_bboxes[:, 4].argsort()[::-1]]
return best_bboxes
def sigmoid(self, x):
return np.clip(0.2 * x + 0.5, 0, 1)
def gen_proposals(self, outputs):
new_pred = []
anchor_grid = np.array(ANCHORS).reshape(-1, 1, 1, 3, 2)
for i, pred in enumerate(outputs):
pred = self.sigmoid(pred)
n, h, w, c = pred.shape
pred = pred.reshape(n, h, w, 3, 85)
conv_shape = pred.shape
output_size = conv_shape[1]
conv_raw_dxdy = pred[..., 0:2]
conv_raw_dwdh = pred[..., 2:4]
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
xy_grid = xy_grid.astype(np.float32)
pred_xy = (conv_raw_dxdy * 2.0 - 0.5 + xy_grid) * STRIDES[i]
pred_wh = (conv_raw_dwdh * 2) ** 2 * anchor_grid[i]
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)
new_pred.append(np.reshape(pred, (-1, np.shape(pred)[-1])))
return np.concatenate(new_pred, axis=0)
def post_processing(self, outputs, input_shape, threshold=0.3):
proposals = self.gen_proposals(outputs)
bboxes = self.nms(proposals, IOU_THRESH, CONF_THRESH, multi_label=True)
"""
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
"""
results = np.zeros((20, 6), np.float32) results = np.zeros((20, 6), np.float32)
for i, bbox in enumerate(bboxes): try:
if not isinstance(raw_output, np.ndarray):
raw_output = np.array(raw_output)
if len(raw_output.shape) == 4 and raw_output.shape[0] == 1 and raw_output.shape[1] == 1:
raw_output = raw_output.squeeze(1)
pred = raw_output[0].transpose(1, 0)
bxy = pred[:, :2]
bwh = pred[:, 2:4]
cls = pred[:, 4:4 + NUM_CLASSES]
cx = bxy[:, 0]
cy = bxy[:, 1]
w = bwh[:, 0]
h = bwh[:, 1]
x_min = cx - w / 2
y_min = cy - h / 2
x_max = cx + w / 2
y_max = cy + h / 2
scores = np.max(cls, axis=1)
class_ids = np.argmax(cls, axis=1)
mask = scores >= CONF_THRESH
boxes = np.stack([x_min, y_min, x_max, y_max], axis=1)[mask]
scores = scores[mask]
class_ids = class_ids[mask]
if len(boxes) == 0:
return results
boxes_nms = np.stack([x_min[mask], y_min[mask],
x_max[mask] - x_min[mask],
y_max[mask] - y_min[mask]], axis=1)
indices = cv2.dnn.NMSBoxes(
boxes_nms.tolist(),
scores.tolist(),
score_threshold=CONF_THRESH,
nms_threshold=IOU_THRESH
)
if len(indices) == 0:
return results
indices = indices.flatten()
sorted_indices = sorted(indices, key=lambda idx: scores[idx], reverse=True)
indices = sorted_indices
valid_detections = 0
for i, idx in enumerate(indices):
if i >= 20: if i >= 20:
break break
coor = np.array(bbox[:4], dtype=np.int32)
score = bbox[4] x_min_val, y_min_val, x_max_val, y_max_val = boxes[idx]
if score < threshold: score = scores[idx]
class_id = class_ids[idx]
if score < CONF_THRESH:
continue continue
class_ind = int(bbox[5])
results[i] = [ results[valid_detections] = [
class_ind, float(class_id), # class_id
score, float(score), # score
max(0, bbox[1]) / input_shape[1], max(0, y_min_val) / input_shape[0], # y_min
max(0, bbox[0]) / input_shape[0], max(0, x_min_val) / input_shape[1], # x_min
min(1, bbox[3] / input_shape[1]), min(1, y_max_val / input_shape[0]), # y_max
min(1, bbox[2] / input_shape[0]), min(1, x_max_val / input_shape[1]) # x_max
] ]
valid_detections += 1
return results
except Exception as e:
return results return results
def detect_raw(self, tensor_input): def detect_raw(self, tensor_input):