mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-24 13:08:29 +03:00
Use cv2 to draw object boxes and labels instead of tensorflow object_detection.utils
This facilitates removing tensorflow models and protobuf-python from the docker image greatly reducing image build time and image size by ~1.3GB
This commit is contained in:
parent
7f565333d9
commit
8ffdcc95c6
19
Dockerfile
19
Dockerfile
@ -50,21 +50,6 @@ RUN pip install -U pip \
|
|||||||
paho-mqtt \
|
paho-mqtt \
|
||||||
PyYAML
|
PyYAML
|
||||||
|
|
||||||
# Install tensorflow models object detection
|
|
||||||
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
|
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
|
|
||||||
|
|
||||||
# Download & build protobuf-python
|
|
||||||
RUN cd /usr/local/src/ \
|
|
||||||
&& tar xf protobuf-python-3.5.1.tar.gz \
|
|
||||||
&& rm protobuf-python-3.5.1.tar.gz \
|
|
||||||
&& cd /usr/local/src/protobuf-3.5.1/ \
|
|
||||||
&& ./configure \
|
|
||||||
&& make \
|
|
||||||
&& make install \
|
|
||||||
&& ldconfig \
|
|
||||||
&& rm -rf /usr/local/src/protobuf-3.5.1/
|
|
||||||
|
|
||||||
# Download & build OpenCV
|
# Download & build OpenCV
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||||
RUN cd /usr/local/src/ \
|
RUN cd /usr/local/src/ \
|
||||||
@ -97,10 +82,6 @@ RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /coco_labels.t
|
|||||||
RUN (apt-get autoremove -y; \
|
RUN (apt-get autoremove -y; \
|
||||||
apt-get autoclean -y)
|
apt-get autoclean -y)
|
||||||
|
|
||||||
# Set TF object detection available
|
|
||||||
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
|
|
||||||
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
|
|
||||||
|
|
||||||
WORKDIR /opt/frigate/
|
WORKDIR /opt/frigate/
|
||||||
ADD frigate frigate/
|
ADD frigate frigate/
|
||||||
COPY detect_objects.py .
|
COPY detect_objects.py .
|
||||||
|
|||||||
@ -2,7 +2,7 @@ import time
|
|||||||
import datetime
|
import datetime
|
||||||
import threading
|
import threading
|
||||||
import cv2
|
import cv2
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
from . util import drawobjectbox
|
||||||
|
|
||||||
class ObjectCleaner(threading.Thread):
|
class ObjectCleaner(threading.Thread):
|
||||||
def __init__(self, objects_parsed, detected_objects):
|
def __init__(self, objects_parsed, detected_objects):
|
||||||
@ -79,18 +79,15 @@ class BestPersonFrame(threading.Thread):
|
|||||||
recent_frames = self.recent_frames.copy()
|
recent_frames = self.recent_frames.copy()
|
||||||
|
|
||||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||||
best_frame = recent_frames[self.best_person['frame_time']]
|
self.best_frame = recent_frames[self.best_person['frame_time']]
|
||||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
|
||||||
# draw the bounding box on the frame
|
|
||||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
|
||||||
self.best_person['ymin'],
|
|
||||||
self.best_person['xmin'],
|
|
||||||
self.best_person['ymax'],
|
|
||||||
self.best_person['xmax'],
|
|
||||||
color='red',
|
|
||||||
thickness=2,
|
|
||||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
|
||||||
use_normalized_coordinates=False)
|
|
||||||
|
|
||||||
# convert back to BGR
|
label = "{}: {}%".format(self.best_person['name'], int(self.best_person['score'] * 100))
|
||||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
bounding_box = (
|
||||||
|
self.best_person['xmin'],
|
||||||
|
self.best_person['ymin'],
|
||||||
|
self.best_person['xmax'],
|
||||||
|
self.best_person['ymax']
|
||||||
|
)
|
||||||
|
|
||||||
|
# draw the bounding box on the frame
|
||||||
|
drawobjectbox(self.best_frame, label, bounding_box)
|
||||||
|
|||||||
@ -1,5 +1,25 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
LABEL_FONT = cv2.FONT_HERSHEY_PLAIN
|
||||||
|
FONT_SCALE = 0.8
|
||||||
|
|
||||||
# convert shared memory array into numpy array
|
# convert shared memory array into numpy array
|
||||||
def tonumpyarray(mp_arr):
|
def tonumpyarray(mp_arr):
|
||||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||||
|
|
||||||
|
# draw a box with text in the upper left on the image
|
||||||
|
def drawobjectbox(image, text, rect):
|
||||||
|
x1, y1, x2, y2 = rect
|
||||||
|
|
||||||
|
# draw the red bounding box
|
||||||
|
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
||||||
|
|
||||||
|
# get the size of the text
|
||||||
|
(text_width, text_height) = cv2.getTextSize(text, LABEL_FONT, FONT_SCALE, 1)[0]
|
||||||
|
|
||||||
|
# draw the text background with padding
|
||||||
|
cv2.rectangle(image, (x1, y1), (x1 + text_width + 8, y1 - text_height - 8), (0, 0, 255), cv2.FILLED)
|
||||||
|
|
||||||
|
# draw the text
|
||||||
|
cv2.putText(image, text, (x1 + 4, y1 - 4), LABEL_FONT, FONT_SCALE, (0, 0, 0), lineType=cv2.LINE_AA)
|
||||||
|
|||||||
@ -6,8 +6,8 @@ import threading
|
|||||||
import ctypes
|
import ctypes
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
|
||||||
from . util import tonumpyarray
|
from . util import tonumpyarray
|
||||||
|
from . util import drawobjectbox
|
||||||
from . object_detection import FramePrepper
|
from . object_detection import FramePrepper
|
||||||
from . objects import ObjectCleaner, BestPersonFrame
|
from . objects import ObjectCleaner, BestPersonFrame
|
||||||
from . mqtt import MqttObjectPublisher
|
from . mqtt import MqttObjectPublisher
|
||||||
@ -279,19 +279,16 @@ class Camera:
|
|||||||
with self.frame_lock:
|
with self.frame_lock:
|
||||||
frame = self.shared_frame_np.copy()
|
frame = self.shared_frame_np.copy()
|
||||||
|
|
||||||
# convert to RGB for drawing
|
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
||||||
# draw the bounding boxes on the screen
|
|
||||||
for obj in detected_objects:
|
for obj in detected_objects:
|
||||||
vis_util.draw_bounding_box_on_image_array(frame,
|
label = "{}: {}%".format(obj['name'], int(obj['score'] * 100))
|
||||||
obj['ymin'],
|
bounding_box = (
|
||||||
obj['xmin'],
|
obj['xmin'],
|
||||||
obj['ymax'],
|
obj['ymin'],
|
||||||
obj['xmax'],
|
obj['xmax'],
|
||||||
color='red',
|
obj['ymax']
|
||||||
thickness=2,
|
)
|
||||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
||||||
use_normalized_coordinates=False)
|
drawobjectbox(frame, label, bounding_box)
|
||||||
|
|
||||||
for region in self.regions:
|
for region in self.regions:
|
||||||
color = (255,255,255)
|
color = (255,255,255)
|
||||||
@ -299,11 +296,4 @@ class Camera:
|
|||||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||||
color, 2)
|
color, 2)
|
||||||
|
|
||||||
# convert back to BGR
|
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
return frame
|
return frame
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue
Block a user