mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 05:24:11 +03:00
Initial commit for AXERA AI accelerators
This commit is contained in:
parent
4e99ee0c33
commit
7b4eaf2d10
26
.github/workflows/ci.yml
vendored
26
.github/workflows/ci.yml
vendored
@ -225,3 +225,29 @@ jobs:
|
||||
sources: |
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-amd64
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-rpi
|
||||
axera_build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: AXERA Build
|
||||
needs:
|
||||
- amd64_build
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Axera build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: axcl
|
||||
files: docker/axcl/axcl.hcl
|
||||
set: |
|
||||
axcl.tags=${{ steps.setup.outputs.image-name }}-axcl
|
||||
*.cache-from=type=gha
|
||||
59
docker/axcl/Dockerfile
Normal file
59
docker/axcl/Dockerfile
Normal file
@ -0,0 +1,59 @@
|
||||
# syntax=docker/dockerfile:1.6
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Globally set pip break-system-packages option to avoid having to specify it every time
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES=1
|
||||
|
||||
|
||||
FROM frigate AS frigate-axcl
|
||||
ARG TARGETARCH
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
# Install axmodels
|
||||
RUN mkdir -p /axmodels \
|
||||
&& wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/yolov5s_320.axmodel -O /axmodels/yolov5s_320.axmodel
|
||||
|
||||
# Install axpyengine
|
||||
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl
|
||||
RUN pip3 install -i https://mirrors.aliyun.com/pypi/simple/ /axengine-0.1.3-py3-none-any.whl \
|
||||
&& rm /axengine-0.1.3-py3-none-any.whl
|
||||
|
||||
# Install axcl
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
echo "Installing x86_64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
else \
|
||||
echo "Installing aarch64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
fi
|
||||
|
||||
RUN mkdir /unpack_axcl && \
|
||||
dpkg-deb -x /axcl.deb /unpack_axcl && \
|
||||
cp -R /unpack_axcl/usr/bin/axcl /usr/bin/ && \
|
||||
cp -R /unpack_axcl/usr/lib/axcl /usr/lib/ && \
|
||||
rm -rf /unpack_axcl /axcl.deb
|
||||
|
||||
|
||||
# Install axcl ffmpeg
|
||||
RUN mkdir -p /usr/lib/ffmpeg/axcl
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-x64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-x64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
else \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-aarch64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-aarch64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
fi
|
||||
|
||||
RUN chmod +x /usr/lib/ffmpeg/axcl/ffmpeg /usr/lib/ffmpeg/axcl/ffprobe
|
||||
|
||||
# Set ldconfig path
|
||||
RUN echo "/usr/lib/axcl" > /etc/ld.so.conf.d/ax.conf
|
||||
|
||||
# Set env
|
||||
ENV PATH="$PATH:/usr/bin/axcl"
|
||||
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib/axcl"
|
||||
|
||||
ENTRYPOINT ["sh", "-c", "ldconfig && exec /init"]
|
||||
13
docker/axcl/axcl.hcl
Normal file
13
docker/axcl/axcl.hcl
Normal file
@ -0,0 +1,13 @@
|
||||
target frigate {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
target = "frigate"
|
||||
}
|
||||
|
||||
target axcl {
|
||||
dockerfile = "docker/axcl/Dockerfile"
|
||||
contexts = {
|
||||
frigate = "target:frigate",
|
||||
}
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
}
|
||||
15
docker/axcl/axcl.mk
Normal file
15
docker/axcl/axcl.mk
Normal file
@ -0,0 +1,15 @@
|
||||
BOARDS += axcl
|
||||
|
||||
local-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=frigate:latest-axcl \
|
||||
--load
|
||||
|
||||
build-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl
|
||||
|
||||
push-axcl: build-axcl
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl \
|
||||
--push
|
||||
83
docker/axcl/user_installation.sh
Executable file
83
docker/axcl/user_installation.sh
Executable file
@ -0,0 +1,83 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget pciutils kmod udev
|
||||
|
||||
# Check if gcc-12 is needed
|
||||
current_gcc_version=$(gcc --version | head -n1 | awk '{print $NF}')
|
||||
gcc_major_version=$(echo $current_gcc_version | cut -d'.' -f1)
|
||||
|
||||
if [[ $gcc_major_version -lt 12 ]]; then
|
||||
echo "Current GCC version ($current_gcc_version) is lower than 12, installing gcc-12..."
|
||||
sudo apt-get install -y gcc-12
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
|
||||
echo "GCC-12 installed and set as default"
|
||||
else
|
||||
echo "Current GCC version ($current_gcc_version) is sufficient, skipping GCC installation"
|
||||
fi
|
||||
|
||||
# Determine architecture
|
||||
arch=$(uname -m)
|
||||
download_url=""
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
elif [[ $arch == "aarch64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
else
|
||||
echo "Unsupported architecture: $arch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download AXCL driver
|
||||
echo "Downloading AXCL driver for $arch..."
|
||||
wget "$download_url" -O "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to download AXCL driver"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install AXCL driver
|
||||
echo "Installing AXCL driver..."
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to install AXCL driver, attempting to fix dependencies..."
|
||||
sudo apt-get install -f -y
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "AXCL driver installation failed"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Update environment
|
||||
echo "Updating environment..."
|
||||
source /etc/profile
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying AXCL installation..."
|
||||
if command -v axcl-smi &> /dev/null; then
|
||||
echo "AXCL driver detected, checking AI accelerator status..."
|
||||
|
||||
axcl_output=$(axcl-smi 2>&1)
|
||||
axcl_exit_code=$?
|
||||
|
||||
echo "$axcl_output"
|
||||
|
||||
if [ $axcl_exit_code -eq 0 ]; then
|
||||
echo "AXCL driver installation completed successfully!"
|
||||
else
|
||||
echo "AXCL driver installed but no AI accelerator detected or communication failed."
|
||||
echo "Please check if the AI accelerator is properly connected and powered on."
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "axcl-smi command not found. AXCL driver installation may have failed."
|
||||
exit 1
|
||||
fi
|
||||
@ -47,6 +47,11 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs.
|
||||
|
||||
**AXERA**
|
||||
|
||||
- [AXEngine](#axera): axmodels can run on AXERA AI acceleration.
|
||||
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
@ -1099,6 +1104,40 @@ model: # required
|
||||
labelmap_path: /labelmap/coco-80.txt # required
|
||||
```
|
||||
|
||||
## AXERA
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
- AX650N
|
||||
- AX8850N
|
||||
|
||||
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
||||
|
||||
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
||||
|
||||
### Configuration
|
||||
|
||||
When configuring the AXEngine detector, you have to specify the model name.
|
||||
|
||||
#### yolov5s
|
||||
|
||||
A yolov5s model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
|
||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||
|
||||
```yaml
|
||||
detectors: # required
|
||||
axengine: # required
|
||||
type: axengine # required
|
||||
|
||||
model: # required
|
||||
path: yolov5s_320 # required
|
||||
width: 320 # required
|
||||
height: 320 # required
|
||||
tensor_format: bgr # required
|
||||
labelmap_path: /labelmap/coco-80.txt # required
|
||||
```
|
||||
|
||||
## Rockchip platform
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
@ -110,6 +110,20 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
| ssd mobilenet | ~ 25 ms |
|
||||
| yolov5m | ~ 118 ms |
|
||||
|
||||
**Synaptics**
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs to provide efficient object detection.
|
||||
|
||||
:::
|
||||
|
||||
### AXERA
|
||||
|
||||
- **AXEngine** Default model is **yolov5s_320**
|
||||
|
||||
| Name | AXERA AX650N/AX8850N Inference Time |
|
||||
| ---------------- | ----------------------------------- |
|
||||
| yolov5s_320 | ~ 1.676 ms |
|
||||
|
||||
### Hailo-8
|
||||
|
||||
Frigate supports both the Hailo-8 and Hailo-8L AI Acceleration Modules on compatible hardware platforms—including the Raspberry Pi 5 with the PCIe hat from the AI kit. The Hailo detector integration in Frigate automatically identifies your hardware type and selects the appropriate default model when a custom model isn’t provided.
|
||||
|
||||
@ -287,6 +287,40 @@ or add these options to your `docker run` command:
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#synaptics) and [hardware video processing](/configuration/hardware_acceleration_video#synaptics).
|
||||
|
||||
### AXERA
|
||||
|
||||
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
||||
|
||||
#### Installation
|
||||
|
||||
Using AXERA accelerators requires the installation of the AXCL driver. We provide a convenient Linux script to complete this installation.
|
||||
|
||||
Follow these steps for installation:
|
||||
|
||||
1. Copy or download [this script](https://github.com/ivanshi1108/assets/releases/download/v0.16.2/user_installation.sh).
|
||||
2. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
|
||||
3. Run the script with `./user_installation.sh`
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/axcl_host
|
||||
- /dev/ax_mmb_dev
|
||||
- /dev/msg_userdev
|
||||
```
|
||||
|
||||
If you are using `docker run`, add this option to your command `--device /dev/axcl_host --device /dev/ax_mmb_dev --device /dev/msg_userdev`
|
||||
|
||||
#### Configuration
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
||||
|
||||
|
||||
## Docker
|
||||
|
||||
Running through Docker with Docker Compose is the recommended install method.
|
||||
|
||||
201
frigate/detectors/plugins/axengine.py
Normal file
201
frigate/detectors/plugins/axengine.py
Normal file
@ -0,0 +1,201 @@
|
||||
import logging
|
||||
import os.path
|
||||
import re
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.util.model import post_process_yolo
|
||||
|
||||
import axengine as axe
|
||||
from axengine import axclrt_provider_name, axengine_provider_name
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "axengine"
|
||||
|
||||
CONF_THRESH = 0.65
|
||||
IOU_THRESH = 0.45
|
||||
STRIDES = [8, 16, 32]
|
||||
ANCHORS = [
|
||||
[10, 13, 16, 30, 33, 23],
|
||||
[30, 61, 62, 45, 59, 119],
|
||||
[116, 90, 156, 198, 373, 326],
|
||||
]
|
||||
|
||||
class AxengineDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
|
||||
class Axengine(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
def __init__(self, config: AxengineDetectorConfig):
|
||||
logger.info("__init__ axengine")
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
model_path = config.model.path or "yolov5s_320"
|
||||
self.session = axe.InferenceSession(f"/axmodels/{model_path}.axmodel")
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
|
||||
def xywh2xyxy(self, x):
|
||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
def bboxes_iou(self, boxes1, boxes2):
|
||||
"""calculate the Intersection Over Union value"""
|
||||
boxes1 = np.array(boxes1)
|
||||
boxes2 = np.array(boxes2)
|
||||
|
||||
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (
|
||||
boxes1[..., 3] - boxes1[..., 1]
|
||||
)
|
||||
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (
|
||||
boxes2[..., 3] - boxes2[..., 1]
|
||||
)
|
||||
|
||||
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
|
||||
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
|
||||
|
||||
inter_section = np.maximum(right_down - left_up, 0.0)
|
||||
inter_area = inter_section[..., 0] * inter_section[..., 1]
|
||||
union_area = boxes1_area + boxes2_area - inter_area
|
||||
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)
|
||||
|
||||
return ious
|
||||
|
||||
def nms(self, proposals, iou_threshold, conf_threshold, multi_label=False):
|
||||
"""
|
||||
:param bboxes: (xmin, ymin, xmax, ymax, score, class)
|
||||
|
||||
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
|
||||
https://github.com/bharatsingh430/soft-nms
|
||||
"""
|
||||
xc = proposals[..., 4] > conf_threshold
|
||||
proposals = proposals[xc]
|
||||
proposals[:, 5:] *= proposals[:, 4:5]
|
||||
bboxes = self.xywh2xyxy(proposals[:, :4])
|
||||
if multi_label:
|
||||
mask = proposals[:, 5:] > conf_threshold
|
||||
nonzero_indices = np.argwhere(mask)
|
||||
if nonzero_indices.size < 0:
|
||||
return
|
||||
i, j = nonzero_indices.T
|
||||
bboxes = np.hstack(
|
||||
(bboxes[i], proposals[i, j + 5][:, None], j[:, None].astype(float))
|
||||
)
|
||||
else:
|
||||
confidences = proposals[:, 5:]
|
||||
conf = confidences.max(axis=1, keepdims=True)
|
||||
j = confidences.argmax(axis=1)[:, None]
|
||||
|
||||
new_x_parts = [bboxes, conf, j.astype(float)]
|
||||
bboxes = np.hstack(new_x_parts)
|
||||
|
||||
mask = conf.reshape(-1) > conf_threshold
|
||||
bboxes = bboxes[mask]
|
||||
|
||||
classes_in_img = list(set(bboxes[:, 5]))
|
||||
bboxes = bboxes[bboxes[:, 4].argsort()[::-1][:300]]
|
||||
best_bboxes = []
|
||||
|
||||
for cls in classes_in_img:
|
||||
cls_mask = bboxes[:, 5] == cls
|
||||
cls_bboxes = bboxes[cls_mask]
|
||||
|
||||
while len(cls_bboxes) > 0:
|
||||
max_ind = np.argmax(cls_bboxes[:, 4])
|
||||
best_bbox = cls_bboxes[max_ind]
|
||||
best_bboxes.append(best_bbox)
|
||||
cls_bboxes = np.concatenate(
|
||||
[cls_bboxes[:max_ind], cls_bboxes[max_ind + 1 :]]
|
||||
)
|
||||
iou = self.bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
|
||||
weight = np.ones((len(iou),), dtype=np.float32)
|
||||
|
||||
iou_mask = iou > iou_threshold
|
||||
weight[iou_mask] = 0.0
|
||||
|
||||
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
|
||||
score_mask = cls_bboxes[:, 4] > 0.0
|
||||
cls_bboxes = cls_bboxes[score_mask]
|
||||
|
||||
if len(best_bboxes) == 0:
|
||||
return np.empty((0, 6))
|
||||
|
||||
best_bboxes = np.vstack(best_bboxes)
|
||||
best_bboxes = best_bboxes[best_bboxes[:, 4].argsort()[::-1]]
|
||||
return best_bboxes
|
||||
|
||||
def sigmoid(self, x):
|
||||
return np.clip(0.2 * x + 0.5, 0, 1)
|
||||
|
||||
def gen_proposals(self, outputs):
|
||||
new_pred = []
|
||||
anchor_grid = np.array(ANCHORS).reshape(-1, 1, 1, 3, 2)
|
||||
for i, pred in enumerate(outputs):
|
||||
pred = self.sigmoid(pred)
|
||||
n, h, w, c = pred.shape
|
||||
|
||||
pred = pred.reshape(n, h, w, 3, 85)
|
||||
conv_shape = pred.shape
|
||||
output_size = conv_shape[1]
|
||||
conv_raw_dxdy = pred[..., 0:2]
|
||||
conv_raw_dwdh = pred[..., 2:4]
|
||||
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
|
||||
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)
|
||||
|
||||
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
|
||||
xy_grid = xy_grid.astype(np.float32)
|
||||
pred_xy = (conv_raw_dxdy * 2.0 - 0.5 + xy_grid) * STRIDES[i]
|
||||
pred_wh = (conv_raw_dwdh * 2) ** 2 * anchor_grid[i]
|
||||
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)
|
||||
|
||||
new_pred.append(np.reshape(pred, (-1, np.shape(pred)[-1])))
|
||||
|
||||
return np.concatenate(new_pred, axis=0)
|
||||
|
||||
def post_processing(self, outputs, input_shape, threshold=0.3):
|
||||
proposals = self.gen_proposals(outputs)
|
||||
bboxes = self.nms(proposals, IOU_THRESH, CONF_THRESH, multi_label=True)
|
||||
|
||||
"""
|
||||
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
|
||||
"""
|
||||
|
||||
results = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, bbox in enumerate(bboxes):
|
||||
if i >= 20:
|
||||
break
|
||||
coor = np.array(bbox[:4], dtype=np.int32)
|
||||
score = bbox[4]
|
||||
if score < threshold:
|
||||
continue
|
||||
class_ind = int(bbox[5])
|
||||
results[i] = [
|
||||
class_ind,
|
||||
score,
|
||||
max(0, bbox[1]) / input_shape[1],
|
||||
max(0, bbox[0]) / input_shape[0],
|
||||
min(1, bbox[3] / input_shape[1]),
|
||||
min(1, bbox[2] / input_shape[0]),
|
||||
]
|
||||
return results
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
results = None
|
||||
results = self.session.run(None, {"images": tensor_input})
|
||||
return self.post_processing(results, (self.width, self.height))
|
||||
Loading…
Reference in New Issue
Block a user