mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-15 07:35:27 +03:00
fixes
This commit is contained in:
parent
66d0ad5803
commit
7a458f6c2b
@ -146,13 +146,14 @@ class Embeddings:
|
||||
ids = list(event_thumbs.keys())
|
||||
embeddings = self.vision_embedding(images)
|
||||
items = [(ids[i], serialize(embeddings[i])) for i in range(len(ids))]
|
||||
flat_items = [item for sublist in items for item in sublist]
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(items))),
|
||||
items,
|
||||
flat_items,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
@ -172,13 +173,14 @@ class Embeddings:
|
||||
embeddings = self.text_embedding(list(event_descriptions.values()))
|
||||
ids = list(event_descriptions.keys())
|
||||
items = [(ids[i], serialize(embeddings[i])) for i in range(len(ids))]
|
||||
flat_items = [item for sublist in items for item in sublist]
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(items))),
|
||||
items,
|
||||
flat_items,
|
||||
)
|
||||
|
||||
return embeddings
|
||||
@ -196,16 +198,6 @@ class Embeddings:
|
||||
os.remove(os.path.join(CONFIG_DIR, ".search_stats.json"))
|
||||
|
||||
st = time.time()
|
||||
totals = {
|
||||
"thumbnails": 0,
|
||||
"descriptions": 0,
|
||||
"processed_objects": 0,
|
||||
"total_objects": 0,
|
||||
"time_remaining": 0,
|
||||
"status": "indexing",
|
||||
}
|
||||
|
||||
self.requestor.send_data(UPDATE_EMBEDDINGS_REINDEX_PROGRESS, totals)
|
||||
|
||||
# Get total count of events to process
|
||||
total_events = (
|
||||
@ -216,11 +208,21 @@ class Embeddings:
|
||||
)
|
||||
.count()
|
||||
)
|
||||
totals["total_objects"] = total_events
|
||||
|
||||
batch_size = 32
|
||||
current_page = 1
|
||||
|
||||
totals = {
|
||||
"thumbnails": 0,
|
||||
"descriptions": 0,
|
||||
"processed_objects": total_events - 1 if total_events < batch_size else 0,
|
||||
"total_objects": total_events,
|
||||
"time_remaining": 0 if total_events < batch_size else -1,
|
||||
"status": "indexing",
|
||||
}
|
||||
|
||||
self.requestor.send_data(UPDATE_EMBEDDINGS_REINDEX_PROGRESS, totals)
|
||||
|
||||
events = (
|
||||
Event.select()
|
||||
.where(
|
||||
|
||||
@ -164,8 +164,15 @@ class GenericONNXEmbedding:
|
||||
return []
|
||||
|
||||
if self.model_type == "text":
|
||||
max_length = max(len(self.tokenizer.encode(text)) for text in inputs)
|
||||
processed_inputs = [
|
||||
self.tokenizer(text, padding=True, truncation=True, return_tensors="np")
|
||||
self.tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
return_tensors="np",
|
||||
)
|
||||
for text in inputs
|
||||
]
|
||||
else:
|
||||
@ -184,7 +191,8 @@ class GenericONNXEmbedding:
|
||||
onnx_inputs[key].append(value[0])
|
||||
|
||||
for key in onnx_inputs.keys():
|
||||
onnx_inputs[key] = np.array(onnx_inputs[key])
|
||||
if onnx_inputs[key]:
|
||||
onnx_inputs[key] = np.stack(onnx_inputs[key])
|
||||
|
||||
embeddings = self.runner.run(onnx_inputs)[0]
|
||||
return [embedding for embedding in embeddings]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user