mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 21:44:13 +03:00
Merge fbf4388b37 into 3620ef27db
This commit is contained in:
commit
774f76f75b
6
.cursor/rules/frontend-always-use-translation-files.mdc
Normal file
6
.cursor/rules/frontend-always-use-translation-files.mdc
Normal file
@ -0,0 +1,6 @@
|
||||
---
|
||||
globs: ["**/*.ts", "**/*.tsx"]
|
||||
alwaysApply: false
|
||||
---
|
||||
|
||||
Never write strings in the frontend directly, always write to and reference the relevant translations file.
|
||||
67
.github/workflows/ci.yml
vendored
67
.github/workflows/ci.yml
vendored
@ -23,7 +23,7 @@ jobs:
|
||||
name: AMD64 Build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
@ -47,7 +47,7 @@ jobs:
|
||||
name: ARM Build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
@ -77,42 +77,12 @@ jobs:
|
||||
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
|
||||
jetson_jp5_build:
|
||||
if: false
|
||||
runs-on: ubuntu-22.04
|
||||
name: Jetson Jetpack 5
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push TensorRT (Jetson, Jetpack 5)
|
||||
env:
|
||||
ARCH: arm64
|
||||
BASE_IMAGE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
SLIM_BASE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
TRT_BASE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: tensorrt
|
||||
files: docker/tensorrt/trt.hcl
|
||||
set: |
|
||||
tensorrt.tags=${{ steps.setup.outputs.image-name }}-tensorrt-jp5
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp5
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp5,mode=max
|
||||
jetson_jp6_build:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
name: Jetson Jetpack 6
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
@ -143,7 +113,7 @@ jobs:
|
||||
- amd64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
@ -185,7 +155,7 @@ jobs:
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
@ -203,6 +173,31 @@ jobs:
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
synaptics_build:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
name: Synaptics Build
|
||||
needs:
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Synaptics build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: synaptics
|
||||
files: docker/synaptics/synaptics.hcl
|
||||
set: |
|
||||
synaptics.tags=${{ steps.setup.outputs.image-name }}-synaptics
|
||||
*.cache-from=type=gha
|
||||
# The majority of users running arm64 are rpi users, so the rpi
|
||||
# build should be the primary arm64 image
|
||||
assemble_default_build:
|
||||
@ -217,7 +212,7 @@ jobs:
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
uses: docker/login-action@184bdaa0721073962dff0199f1fb9940f07167d1
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
|
||||
63
.github/workflows/pull_request.yml
vendored
63
.github/workflows/pull_request.yml
vendored
@ -4,43 +4,19 @@ on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
- ".github/**"
|
||||
- ".github/*.yml"
|
||||
- ".github/DISCUSSION_TEMPLATE/**"
|
||||
- ".github/ISSUE_TEMPLATE/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.11
|
||||
|
||||
jobs:
|
||||
build_devcontainer:
|
||||
runs-on: ubuntu-latest
|
||||
name: Build Devcontainer
|
||||
# The Dockerfile contains features that requires buildkit, and since the
|
||||
# devcontainer cli uses docker-compose to build the image, the only way to
|
||||
# ensure docker-compose uses buildkit is to explicitly enable it.
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
- name: Install devcontainer cli
|
||||
run: npm install --global @devcontainers/cli
|
||||
- name: Build devcontainer
|
||||
run: devcontainer build --workspace-folder .
|
||||
# It would be nice to also test the following commands, but for some
|
||||
# reason they don't work even though in VS Code devcontainer works.
|
||||
# - name: Start devcontainer
|
||||
# run: devcontainer up --workspace-folder .
|
||||
# - name: Run devcontainer scripts
|
||||
# run: devcontainer run-user-commands --workspace-folder .
|
||||
|
||||
web_lint:
|
||||
name: Web - Lint
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
@ -56,7 +32,7 @@ jobs:
|
||||
name: Web - Test
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
@ -76,7 +52,7 @@ jobs:
|
||||
name: Python Checks
|
||||
steps:
|
||||
- name: Check out the repository
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
|
||||
@ -99,16 +75,21 @@ jobs:
|
||||
name: Python Tests
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build
|
||||
run: make
|
||||
- name: Run mypy
|
||||
run: docker run --rm --entrypoint=python3 frigate:latest -u -m mypy --config-file frigate/mypy.ini frigate
|
||||
- name: Run tests
|
||||
run: docker run --rm --entrypoint=python3 frigate:latest -u -m unittest
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
- name: Install devcontainer cli
|
||||
run: npm install --global @devcontainers/cli
|
||||
- name: Build devcontainer
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
run: devcontainer build --workspace-folder .
|
||||
- name: Start devcontainer
|
||||
run: devcontainer up --workspace-folder .
|
||||
- name: Run mypy in devcontainer
|
||||
run: devcontainer exec --workspace-folder . bash -lc "python3 -u -m mypy --config-file frigate/mypy.ini frigate"
|
||||
- name: Run unit tests in devcontainer
|
||||
run: devcontainer exec --workspace-folder . bash -lc "python3 -u -m unittest"
|
||||
|
||||
4
.github/workflows/release.yml
vendored
4
.github/workflows/release.yml
vendored
@ -10,7 +10,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- id: lowercaseRepo
|
||||
@ -18,7 +18,7 @@ jobs:
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
uses: docker/login-action@184bdaa0721073962dff0199f1fb9940f07167d1
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -15,6 +15,7 @@ frigate/version.py
|
||||
web/build
|
||||
web/node_modules
|
||||
web/coverage
|
||||
web/.env
|
||||
core
|
||||
!/web/**/*.ts
|
||||
.idea/*
|
||||
|
||||
9
Makefile
9
Makefile
@ -1,7 +1,7 @@
|
||||
default_target: local
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
|
||||
VERSION = 0.16.2
|
||||
VERSION = 0.17.0
|
||||
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
|
||||
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
|
||||
BOARDS= #Initialized empty
|
||||
@ -14,12 +14,19 @@ push-boards: $(BOARDS:%=push-%)
|
||||
|
||||
version:
|
||||
echo 'VERSION = "$(VERSION)-$(COMMIT_HASH)"' > frigate/version.py
|
||||
echo 'VITE_GIT_COMMIT_HASH=$(COMMIT_HASH)' > web/.env
|
||||
|
||||
local: version
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag frigate:latest \
|
||||
--load
|
||||
|
||||
debug: version
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--build-arg DEBUG=true \
|
||||
--tag frigate:latest \
|
||||
--load
|
||||
|
||||
amd64:
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) \
|
||||
|
||||
@ -4,13 +4,13 @@ from statistics import mean
|
||||
|
||||
import numpy as np
|
||||
|
||||
import frigate.util as util
|
||||
from frigate.config import DetectorTypeEnum
|
||||
from frigate.object_detection.base import (
|
||||
ObjectDetectProcess,
|
||||
RemoteObjectDetector,
|
||||
load_labels,
|
||||
)
|
||||
from frigate.util.process import FrigateProcess
|
||||
|
||||
my_frame = np.expand_dims(np.full((300, 300, 3), 1, np.uint8), axis=0)
|
||||
labels = load_labels("/labelmap.txt")
|
||||
@ -91,7 +91,7 @@ edgetpu_process_2 = ObjectDetectProcess(
|
||||
)
|
||||
|
||||
for x in range(0, 10):
|
||||
camera_process = util.Process(
|
||||
camera_process = FrigateProcess(
|
||||
target=start, args=(x, 300, detection_queue, events[str(x)])
|
||||
)
|
||||
camera_process.daemon = True
|
||||
|
||||
@ -55,7 +55,7 @@ RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
|
||||
FROM scratch AS go2rtc
|
||||
ARG TARGETARCH
|
||||
WORKDIR /rootfs/usr/local/go2rtc/bin
|
||||
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.9.9/go2rtc_linux_${TARGETARCH}" go2rtc
|
||||
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.9.10/go2rtc_linux_${TARGETARCH}" go2rtc
|
||||
|
||||
FROM wget AS tempio
|
||||
ARG TARGETARCH
|
||||
@ -148,6 +148,7 @@ RUN --mount=type=bind,source=docker/main/install_s6_overlay.sh,target=/deps/inst
|
||||
FROM base AS wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
ARG TARGETARCH
|
||||
ARG DEBUG=false
|
||||
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
@ -177,6 +178,8 @@ RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip"
|
||||
|
||||
COPY docker/main/requirements.txt /requirements.txt
|
||||
COPY docker/main/requirements-dev.txt /requirements-dev.txt
|
||||
|
||||
RUN pip3 install -r /requirements.txt
|
||||
|
||||
# Build pysqlite3 from source
|
||||
@ -184,7 +187,10 @@ COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
|
||||
RUN /build_pysqlite3.sh
|
||||
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/wheels -r /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/wheels -r /requirements-wheels.txt && \
|
||||
if [ "$DEBUG" = "true" ]; then \
|
||||
pip3 wheel --wheel-dir=/wheels -r /requirements-dev.txt; \
|
||||
fi
|
||||
|
||||
# Install HailoRT & Wheels
|
||||
RUN --mount=type=bind,source=docker/main/install_hailort.sh,target=/deps/install_hailort.sh \
|
||||
@ -206,6 +212,7 @@ COPY docker/main/rootfs/ /
|
||||
# Frigate deps (ffmpeg, python, nginx, go2rtc, s6-overlay, etc)
|
||||
FROM slim-base AS deps
|
||||
ARG TARGETARCH
|
||||
ARG BASE_IMAGE
|
||||
|
||||
ARG DEBIAN_FRONTEND
|
||||
# http://stackoverflow.com/questions/48162574/ddg#49462622
|
||||
@ -224,9 +231,15 @@ ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
|
||||
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
|
||||
ENV OPENCV_FFMPEG_LOGLEVEL=8
|
||||
|
||||
# Set NumPy to ignore getlimits warning
|
||||
ENV PYTHONWARNINGS="ignore:::numpy.core.getlimits"
|
||||
|
||||
# Set HailoRT to disable logging
|
||||
ENV HAILORT_LOGGER_PATH=NONE
|
||||
|
||||
# TensorFlow error only
|
||||
ENV TF_CPP_MIN_LOG_LEVEL=3
|
||||
|
||||
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
|
||||
|
||||
# Install dependencies
|
||||
@ -243,6 +256,10 @@ RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
|
||||
pip3 install -U /deps/wheels/*.whl
|
||||
|
||||
# Install MemryX runtime (requires libgomp (OpenMP) in the final docker image)
|
||||
RUN --mount=type=bind,source=docker/main/install_memryx.sh,target=/deps/install_memryx.sh \
|
||||
bash -c "bash /deps/install_memryx.sh"
|
||||
|
||||
COPY --from=deps-rootfs / /
|
||||
|
||||
RUN ldconfig
|
||||
|
||||
@ -5,21 +5,27 @@ set -euxo pipefail
|
||||
SQLITE3_VERSION="3.46.1"
|
||||
PYSQLITE3_VERSION="0.5.3"
|
||||
|
||||
# Install libsqlite3-dev if not present (needed for some base images like NVIDIA TensorRT)
|
||||
if ! dpkg -l | grep -q libsqlite3-dev; then
|
||||
echo "Installing libsqlite3-dev for compilation..."
|
||||
apt-get update && apt-get install -y libsqlite3-dev && rm -rf /var/lib/apt/lists/*
|
||||
fi
|
||||
|
||||
# Fetch the pre-built sqlite amalgamation instead of building from source
|
||||
if [[ ! -d "sqlite" ]]; then
|
||||
mkdir sqlite
|
||||
cd sqlite
|
||||
|
||||
|
||||
# Download the pre-built amalgamation from sqlite.org
|
||||
# For SQLite 3.46.1, the amalgamation version is 3460100
|
||||
SQLITE_AMALGAMATION_VERSION="3460100"
|
||||
|
||||
|
||||
wget https://www.sqlite.org/2024/sqlite-amalgamation-${SQLITE_AMALGAMATION_VERSION}.zip -O sqlite-amalgamation.zip
|
||||
unzip sqlite-amalgamation.zip
|
||||
mv sqlite-amalgamation-${SQLITE_AMALGAMATION_VERSION}/* .
|
||||
rmdir sqlite-amalgamation-${SQLITE_AMALGAMATION_VERSION}
|
||||
rm sqlite-amalgamation.zip
|
||||
|
||||
|
||||
cd ../
|
||||
fi
|
||||
|
||||
|
||||
@ -19,7 +19,9 @@ apt-get -qq install --no-install-recommends -y \
|
||||
nethogs \
|
||||
libgl1 \
|
||||
libglib2.0-0 \
|
||||
libusb-1.0.0
|
||||
libusb-1.0.0 \
|
||||
python3-h2 \
|
||||
libgomp1 # memryx detector
|
||||
|
||||
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1
|
||||
|
||||
@ -31,6 +33,18 @@ unset DEBIAN_FRONTEND
|
||||
yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive
|
||||
rm /tmp/libedgetpu1-max.deb
|
||||
|
||||
# install mesa-teflon-delegate from bookworm-backports
|
||||
# Only available for arm64 at the moment
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
if [[ "${BASE_IMAGE}" == *"nvcr.io/nvidia/tensorrt"* ]]; then
|
||||
echo "Info: Skipping apt-get commands because BASE_IMAGE includes 'nvcr.io/nvidia/tensorrt' for arm64."
|
||||
else
|
||||
echo "deb http://deb.debian.org/debian bookworm-backports main" | tee /etc/apt/sources.list.d/bookworm-backbacks.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y mesa-teflon-delegate/bookworm-backports
|
||||
fi
|
||||
fi
|
||||
|
||||
# ffmpeg -> amd64
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
mkdir -p /usr/lib/ffmpeg/5.0
|
||||
@ -78,11 +92,41 @@ if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \
|
||||
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04
|
||||
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2
|
||||
|
||||
apt-get -qq install -y ocl-icd-libopencl1
|
||||
|
||||
# install libtbb12 for NPU support
|
||||
apt-get -qq install -y libtbb12
|
||||
|
||||
rm -f /usr/share/keyrings/intel-graphics.gpg
|
||||
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
|
||||
# install legacy and standard intel icd and level-zero-gpu
|
||||
# see https://github.com/intel/compute-runtime/blob/master/LEGACY_PLATFORMS.md for more info
|
||||
# needed core package
|
||||
wget https://github.com/intel/compute-runtime/releases/download/24.52.32224.5/libigdgmm12_22.5.5_amd64.deb
|
||||
dpkg -i libigdgmm12_22.5.5_amd64.deb
|
||||
rm libigdgmm12_22.5.5_amd64.deb
|
||||
|
||||
# legacy packages
|
||||
wget https://github.com/intel/compute-runtime/releases/download/24.35.30872.36/intel-opencl-icd-legacy1_24.35.30872.36_amd64.deb
|
||||
wget https://github.com/intel/compute-runtime/releases/download/24.35.30872.36/intel-level-zero-gpu-legacy1_1.5.30872.36_amd64.deb
|
||||
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17537.24/intel-igc-opencl_1.0.17537.24_amd64.deb
|
||||
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17537.24/intel-igc-core_1.0.17537.24_amd64.deb
|
||||
# standard packages
|
||||
wget https://github.com/intel/compute-runtime/releases/download/24.52.32224.5/intel-opencl-icd_24.52.32224.5_amd64.deb
|
||||
wget https://github.com/intel/compute-runtime/releases/download/24.52.32224.5/intel-level-zero-gpu_1.6.32224.5_amd64.deb
|
||||
wget https://github.com/intel/intel-graphics-compiler/releases/download/v2.5.6/intel-igc-opencl-2_2.5.6+18417_amd64.deb
|
||||
wget https://github.com/intel/intel-graphics-compiler/releases/download/v2.5.6/intel-igc-core-2_2.5.6+18417_amd64.deb
|
||||
# npu packages
|
||||
wget https://github.com/oneapi-src/level-zero/releases/download/v1.21.9/level-zero_1.21.9+u22.04_amd64.deb
|
||||
wget https://github.com/intel/linux-npu-driver/releases/download/v1.17.0/intel-driver-compiler-npu_1.17.0.20250508-14912879441_ubuntu22.04_amd64.deb
|
||||
wget https://github.com/intel/linux-npu-driver/releases/download/v1.17.0/intel-fw-npu_1.17.0.20250508-14912879441_ubuntu22.04_amd64.deb
|
||||
wget https://github.com/intel/linux-npu-driver/releases/download/v1.17.0/intel-level-zero-npu_1.17.0.20250508-14912879441_ubuntu22.04_amd64.deb
|
||||
|
||||
dpkg -i *.deb
|
||||
rm *.deb
|
||||
fi
|
||||
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
|
||||
31
docker/main/install_memryx.sh
Normal file
31
docker/main/install_memryx.sh
Normal file
@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# Download the MxAccl for Frigate github release
|
||||
wget https://github.com/memryx/mx_accl_frigate/archive/refs/tags/v2.1.0.zip -O /tmp/mxaccl.zip
|
||||
unzip /tmp/mxaccl.zip -d /tmp
|
||||
mv /tmp/mx_accl_frigate-2.1.0 /opt/mx_accl_frigate
|
||||
rm /tmp/mxaccl.zip
|
||||
|
||||
# Install Python dependencies
|
||||
pip3 install -r /opt/mx_accl_frigate/freeze
|
||||
|
||||
# Link the Python package dynamically
|
||||
SITE_PACKAGES=$(python3 -c "import site; print(site.getsitepackages()[0])")
|
||||
ln -s /opt/mx_accl_frigate/memryx "$SITE_PACKAGES/memryx"
|
||||
|
||||
# Copy architecture-specific shared libraries
|
||||
ARCH=$(uname -m)
|
||||
if [[ "$ARCH" == "x86_64" ]]; then
|
||||
cp /opt/mx_accl_frigate/memryx/x86/libmemx.so* /usr/lib/x86_64-linux-gnu/
|
||||
cp /opt/mx_accl_frigate/memryx/x86/libmx_accl.so* /usr/lib/x86_64-linux-gnu/
|
||||
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||
cp /opt/mx_accl_frigate/memryx/arm/libmemx.so* /usr/lib/aarch64-linux-gnu/
|
||||
cp /opt/mx_accl_frigate/memryx/arm/libmx_accl.so* /usr/lib/aarch64-linux-gnu/
|
||||
else
|
||||
echo "Unsupported architecture: $ARCH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Refresh linker cache
|
||||
ldconfig
|
||||
@ -1 +1,4 @@
|
||||
ruff
|
||||
|
||||
# types
|
||||
types-peewee == 3.17.*
|
||||
|
||||
@ -1,24 +1,28 @@
|
||||
aiofiles == 24.1.*
|
||||
click == 8.1.*
|
||||
# FastAPI
|
||||
aiohttp == 3.11.3
|
||||
starlette == 0.41.2
|
||||
starlette-context == 0.3.6
|
||||
fastapi == 0.115.*
|
||||
uvicorn == 0.30.*
|
||||
aiohttp == 3.12.*
|
||||
starlette == 0.47.*
|
||||
starlette-context == 0.4.*
|
||||
fastapi[standard-no-fastapi-cloud-cli] == 0.116.*
|
||||
uvicorn == 0.35.*
|
||||
slowapi == 0.1.*
|
||||
joserfc == 1.0.*
|
||||
pathvalidate == 3.2.*
|
||||
joserfc == 1.2.*
|
||||
cryptography == 44.0.*
|
||||
pathvalidate == 3.3.*
|
||||
markupsafe == 3.0.*
|
||||
python-multipart == 0.0.12
|
||||
python-multipart == 0.0.20
|
||||
# Classification Model Training
|
||||
tensorflow == 2.19.* ; platform_machine == 'aarch64'
|
||||
tensorflow-cpu == 2.19.* ; platform_machine == 'x86_64'
|
||||
# General
|
||||
mypy == 1.6.1
|
||||
onvif-zeep-async == 3.1.*
|
||||
onvif-zeep-async == 4.0.*
|
||||
paho-mqtt == 2.1.*
|
||||
pandas == 2.2.*
|
||||
peewee == 3.17.*
|
||||
peewee_migrate == 1.13.*
|
||||
psutil == 6.1.*
|
||||
psutil == 7.1.*
|
||||
pydantic == 2.10.*
|
||||
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
|
||||
pytz == 2025.*
|
||||
@ -27,7 +31,7 @@ ruamel.yaml == 0.18.*
|
||||
tzlocal == 5.2
|
||||
requests == 2.32.*
|
||||
types-requests == 2.32.*
|
||||
norfair == 2.2.*
|
||||
norfair == 2.3.*
|
||||
setproctitle == 1.3.*
|
||||
ws4py == 0.5.*
|
||||
unidecode == 1.3.*
|
||||
@ -36,16 +40,15 @@ titlecase == 2.4.*
|
||||
numpy == 1.26.*
|
||||
opencv-python-headless == 4.11.0.*
|
||||
opencv-contrib-python == 4.11.0.*
|
||||
scipy == 1.14.*
|
||||
scipy == 1.16.*
|
||||
# OpenVino & ONNX
|
||||
openvino == 2024.4.*
|
||||
onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64'
|
||||
onnxruntime == 1.20.* ; platform_machine == 'aarch64'
|
||||
openvino == 2025.3.*
|
||||
onnxruntime == 1.22.*
|
||||
# Embeddings
|
||||
transformers == 4.45.*
|
||||
# Generative AI
|
||||
google-generativeai == 0.8.*
|
||||
ollama == 0.3.*
|
||||
ollama == 0.5.*
|
||||
openai == 1.65.*
|
||||
# push notifications
|
||||
py-vapid == 1.9.*
|
||||
@ -53,7 +56,7 @@ pywebpush == 2.0.*
|
||||
# alpr
|
||||
pyclipper == 1.3.*
|
||||
shapely == 2.0.*
|
||||
Levenshtein==0.26.*
|
||||
rapidfuzz==3.12.*
|
||||
# HailoRT Wheels
|
||||
appdirs==1.4.*
|
||||
argcomplete==2.0.*
|
||||
@ -71,3 +74,10 @@ prometheus-client == 0.21.*
|
||||
# TFLite
|
||||
tflite_runtime @ https://github.com/frigate-nvr/TFlite-builds/releases/download/v2.17.1/tflite_runtime-2.17.1-cp311-cp311-linux_x86_64.whl; platform_machine == 'x86_64'
|
||||
tflite_runtime @ https://github.com/feranick/TFlite-builds/releases/download/v2.17.1/tflite_runtime-2.17.1-cp311-cp311-linux_aarch64.whl; platform_machine == 'aarch64'
|
||||
# audio transcription
|
||||
sherpa-onnx==1.12.*
|
||||
faster-whisper==1.1.*
|
||||
librosa==0.11.*
|
||||
soundfile==0.13.*
|
||||
# DeGirum detector
|
||||
degirum == 0.16.*
|
||||
|
||||
@ -1,2 +1 @@
|
||||
scikit-build == 0.18.*
|
||||
nvidia-pyindex
|
||||
|
||||
@ -10,7 +10,7 @@ echo "[INFO] Starting certsync..."
|
||||
|
||||
lefile="/etc/letsencrypt/live/frigate/fullchain.pem"
|
||||
|
||||
tls_enabled=`python3 /usr/local/nginx/get_tls_settings.py | jq -r .enabled`
|
||||
tls_enabled=`python3 /usr/local/nginx/get_listen_settings.py | jq -r .tls.enabled`
|
||||
|
||||
while true
|
||||
do
|
||||
|
||||
@ -50,6 +50,38 @@ function set_libva_version() {
|
||||
export LIBAVFORMAT_VERSION_MAJOR
|
||||
}
|
||||
|
||||
function setup_homekit_config() {
|
||||
local config_path="$1"
|
||||
|
||||
if [[ ! -f "${config_path}" ]]; then
|
||||
echo "[INFO] Creating empty HomeKit config file..."
|
||||
echo '{}' > "${config_path}"
|
||||
fi
|
||||
|
||||
# Convert YAML to JSON for jq processing
|
||||
local temp_json="/tmp/cache/homekit_config.json"
|
||||
yq eval -o=json "${config_path}" > "${temp_json}" 2>/dev/null || {
|
||||
echo "[WARNING] Failed to convert HomeKit config to JSON, skipping cleanup"
|
||||
return 0
|
||||
}
|
||||
|
||||
# Use jq to filter and keep only the homekit section
|
||||
local cleaned_json="/tmp/cache/homekit_cleaned.json"
|
||||
jq '
|
||||
# Keep only the homekit section if it exists, otherwise empty object
|
||||
if has("homekit") then {homekit: .homekit} else {homekit: {}} end
|
||||
' "${temp_json}" > "${cleaned_json}" 2>/dev/null || echo '{"homekit": {}}' > "${cleaned_json}"
|
||||
|
||||
# Convert back to YAML and write to the config file
|
||||
yq eval -P "${cleaned_json}" > "${config_path}" 2>/dev/null || {
|
||||
echo "[WARNING] Failed to convert cleaned config to YAML, creating minimal config"
|
||||
echo '{"homekit": {}}' > "${config_path}"
|
||||
}
|
||||
|
||||
# Clean up temp files
|
||||
rm -f "${temp_json}" "${cleaned_json}"
|
||||
}
|
||||
|
||||
set_libva_version
|
||||
|
||||
if [[ -f "/dev/shm/go2rtc.yaml" ]]; then
|
||||
@ -70,6 +102,10 @@ else
|
||||
echo "[WARNING] Unable to remove existing go2rtc config. Changes made to your frigate config file may not be recognized. Please remove the /dev/shm/go2rtc.yaml from your docker host manually."
|
||||
fi
|
||||
|
||||
# HomeKit configuration persistence setup
|
||||
readonly homekit_config_path="/config/go2rtc_homekit.yml"
|
||||
setup_homekit_config "${homekit_config_path}"
|
||||
|
||||
readonly config_path="/config"
|
||||
|
||||
if [[ -x "${config_path}/go2rtc" ]]; then
|
||||
@ -82,5 +118,7 @@ fi
|
||||
echo "[INFO] Starting go2rtc..."
|
||||
|
||||
# Replace the bash process with the go2rtc process, redirecting stderr to stdout
|
||||
# Use HomeKit config as the primary config so writebacks go there
|
||||
# The main config from Frigate will be loaded as a secondary config
|
||||
exec 2>&1
|
||||
exec "${binary_path}" -config=/dev/shm/go2rtc.yaml
|
||||
exec "${binary_path}" -config="${homekit_config_path}" -config=/dev/shm/go2rtc.yaml
|
||||
|
||||
@ -85,7 +85,7 @@ python3 /usr/local/nginx/get_base_path.py | \
|
||||
-out /usr/local/nginx/conf/base_path.conf
|
||||
|
||||
# build templates for optional TLS support
|
||||
python3 /usr/local/nginx/get_tls_settings.py | \
|
||||
python3 /usr/local/nginx/get_listen_settings.py | \
|
||||
tempio -template /usr/local/nginx/templates/listen.gotmpl \
|
||||
-out /usr/local/nginx/conf/listen.conf
|
||||
|
||||
|
||||
@ -17,7 +17,9 @@ http {
|
||||
|
||||
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
|
||||
'$status $body_bytes_sent "$http_referer" '
|
||||
'"$http_user_agent" "$http_x_forwarded_for"';
|
||||
'"$http_user_agent" "$http_x_forwarded_for" '
|
||||
'request_time="$request_time" upstream_response_time="$upstream_response_time"';
|
||||
|
||||
|
||||
access_log /dev/stdout main;
|
||||
|
||||
@ -71,6 +73,8 @@ http {
|
||||
vod_manifest_segment_durations_mode accurate;
|
||||
vod_ignore_edit_list on;
|
||||
vod_segment_duration 10000;
|
||||
|
||||
# MPEG-TS settings (not used when fMP4 is enabled, kept for reference)
|
||||
vod_hls_mpegts_align_frames off;
|
||||
vod_hls_mpegts_interleave_frames on;
|
||||
|
||||
@ -103,6 +107,10 @@ http {
|
||||
aio threads;
|
||||
vod hls;
|
||||
|
||||
# Use fMP4 (fragmented MP4) instead of MPEG-TS for better performance
|
||||
# Smaller segments, faster generation, better browser compatibility
|
||||
vod_hls_container_format fmp4;
|
||||
|
||||
secure_token $args;
|
||||
secure_token_types application/vnd.apple.mpegurl;
|
||||
|
||||
@ -272,6 +280,18 @@ http {
|
||||
include proxy.conf;
|
||||
}
|
||||
|
||||
# Allow unauthenticated access to the first_time_login endpoint
|
||||
# so the login page can load help text before authentication.
|
||||
location /api/auth/first_time_login {
|
||||
auth_request off;
|
||||
limit_except GET {
|
||||
deny all;
|
||||
}
|
||||
rewrite ^/api(/.*)$ $1 break;
|
||||
proxy_pass http://frigate_api;
|
||||
include proxy.conf;
|
||||
}
|
||||
|
||||
location /api/stats {
|
||||
include auth_request.conf;
|
||||
access_log off;
|
||||
|
||||
@ -26,6 +26,10 @@ try:
|
||||
except FileNotFoundError:
|
||||
config: dict[str, Any] = {}
|
||||
|
||||
tls_config: dict[str, Any] = config.get("tls", {"enabled": True})
|
||||
tls_config: dict[str, any] = config.get("tls", {"enabled": True})
|
||||
networking_config = config.get("networking", {})
|
||||
ipv6_config = networking_config.get("ipv6", {"enabled": False})
|
||||
|
||||
print(json.dumps(tls_config))
|
||||
output = {"tls": tls_config, "ipv6": ipv6_config}
|
||||
|
||||
print(json.dumps(output))
|
||||
@ -1,33 +1,45 @@
|
||||
# intended for internal traffic, not protected by auth
|
||||
|
||||
# Internal (IPv4 always; IPv6 optional)
|
||||
listen 5000;
|
||||
{{ if .ipv6 }}{{ if .ipv6.enabled }}listen [::]:5000;{{ end }}{{ end }}
|
||||
|
||||
|
||||
{{ if not .enabled }}
|
||||
# intended for external traffic, protected by auth
|
||||
listen 8971;
|
||||
{{ if .tls }}
|
||||
{{ if .tls.enabled }}
|
||||
# external HTTPS (IPv4 always; IPv6 optional)
|
||||
listen 8971 ssl;
|
||||
{{ if .ipv6 }}{{ if .ipv6.enabled }}listen [::]:8971 ssl;{{ end }}{{ end }}
|
||||
|
||||
ssl_certificate /etc/letsencrypt/live/frigate/fullchain.pem;
|
||||
ssl_certificate_key /etc/letsencrypt/live/frigate/privkey.pem;
|
||||
|
||||
# generated 2024-06-01, Mozilla Guideline v5.7, nginx 1.25.3, OpenSSL 1.1.1w, modern configuration, no OCSP
|
||||
# https://ssl-config.mozilla.org/#server=nginx&version=1.25.3&config=modern&openssl=1.1.1w&ocsp=false&guideline=5.7
|
||||
ssl_session_timeout 1d;
|
||||
ssl_session_cache shared:MozSSL:10m; # about 40000 sessions
|
||||
ssl_session_tickets off;
|
||||
|
||||
# modern configuration
|
||||
ssl_protocols TLSv1.3;
|
||||
ssl_prefer_server_ciphers off;
|
||||
|
||||
# HSTS (ngx_http_headers_module is required) (63072000 seconds)
|
||||
add_header Strict-Transport-Security "max-age=63072000" always;
|
||||
|
||||
# ACME challenge location
|
||||
location /.well-known/acme-challenge/ {
|
||||
default_type "text/plain";
|
||||
root /etc/letsencrypt/www;
|
||||
}
|
||||
{{ else }}
|
||||
# external HTTP (IPv4 always; IPv6 optional)
|
||||
listen 8971;
|
||||
{{ if .ipv6 }}{{ if .ipv6.enabled }}listen [::]:8971;{{ end }}{{ end }}
|
||||
{{ end }}
|
||||
{{ else }}
|
||||
# intended for external traffic, protected by auth
|
||||
listen 8971 ssl;
|
||||
|
||||
ssl_certificate /etc/letsencrypt/live/frigate/fullchain.pem;
|
||||
ssl_certificate_key /etc/letsencrypt/live/frigate/privkey.pem;
|
||||
|
||||
# generated 2024-06-01, Mozilla Guideline v5.7, nginx 1.25.3, OpenSSL 1.1.1w, modern configuration, no OCSP
|
||||
# https://ssl-config.mozilla.org/#server=nginx&version=1.25.3&config=modern&openssl=1.1.1w&ocsp=false&guideline=5.7
|
||||
ssl_session_timeout 1d;
|
||||
ssl_session_cache shared:MozSSL:10m; # about 40000 sessions
|
||||
ssl_session_tickets off;
|
||||
|
||||
# modern configuration
|
||||
ssl_protocols TLSv1.3;
|
||||
ssl_prefer_server_ciphers off;
|
||||
|
||||
# HSTS (ngx_http_headers_module is required) (63072000 seconds)
|
||||
add_header Strict-Transport-Security "max-age=63072000" always;
|
||||
|
||||
# ACME challenge location
|
||||
location /.well-known/acme-challenge/ {
|
||||
default_type "text/plain";
|
||||
root /etc/letsencrypt/www;
|
||||
}
|
||||
# (No tls section) default to HTTP (IPv4 always; IPv6 optional)
|
||||
listen 8971;
|
||||
{{ if .ipv6 }}{{ if .ipv6.enabled }}listen [::]:8971;{{ end }}{{ end }}
|
||||
{{ end }}
|
||||
|
||||
|
||||
44
docker/memryx/user_installation.sh
Normal file
44
docker/memryx/user_installation.sh
Normal file
@ -0,0 +1,44 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit immediately if any command fails
|
||||
set -o pipefail
|
||||
|
||||
echo "Starting MemryX driver and runtime installation..."
|
||||
|
||||
# Detect architecture
|
||||
arch=$(uname -m)
|
||||
|
||||
# Purge existing packages and repo
|
||||
echo "Removing old MemryX installations..."
|
||||
# Remove any holds on MemryX packages (if they exist)
|
||||
sudo apt-mark unhold memx-* mxa-manager || true
|
||||
sudo apt purge -y memx-* mxa-manager || true
|
||||
sudo rm -f /etc/apt/sources.list.d/memryx.list /etc/apt/trusted.gpg.d/memryx.asc
|
||||
|
||||
# Install kernel headers
|
||||
echo "Installing kernel headers for: $(uname -r)"
|
||||
sudo apt update
|
||||
sudo apt install -y dkms linux-headers-$(uname -r)
|
||||
|
||||
# Add MemryX key and repo
|
||||
echo "Adding MemryX GPG key and repository..."
|
||||
wget -qO- https://developer.memryx.com/deb/memryx.asc | sudo tee /etc/apt/trusted.gpg.d/memryx.asc >/dev/null
|
||||
echo 'deb https://developer.memryx.com/deb stable main' | sudo tee /etc/apt/sources.list.d/memryx.list >/dev/null
|
||||
|
||||
# Update and install specific SDK 2.1 packages
|
||||
echo "Installing MemryX SDK 2.1 packages..."
|
||||
sudo apt update
|
||||
sudo apt install -y memx-drivers=2.1.* memx-accl=2.1.* mxa-manager=2.1.*
|
||||
|
||||
# Hold packages to prevent automatic upgrades
|
||||
sudo apt-mark hold memx-drivers memx-accl mxa-manager
|
||||
|
||||
# ARM-specific board setup
|
||||
if [[ "$arch" == "aarch64" || "$arch" == "arm64" ]]; then
|
||||
echo "Running ARM board setup..."
|
||||
sudo mx_arm_setup
|
||||
fi
|
||||
|
||||
echo -e "\n\n\033[1;31mYOU MUST RESTART YOUR COMPUTER NOW\033[0m\n\n"
|
||||
|
||||
echo "MemryX SDK 2.1 installation complete!"
|
||||
|
||||
@ -11,7 +11,8 @@ COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
|
||||
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
|
||||
RUN sed -i "/onnxruntime/d" /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
|
||||
RUN sed -i '/\[.*\]/d' /requirements-wheels.txt \
|
||||
&& pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
|
||||
RUN rm -rf /rk-wheels/opencv_python-*
|
||||
RUN rm -rf /rk-wheels/torch-*
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ARG ROCM=6.3.3
|
||||
ARG ROCM=1
|
||||
ARG AMDGPU=gfx900
|
||||
ARG HSA_OVERRIDE_GFX_VERSION
|
||||
ARG HSA_OVERRIDE
|
||||
@ -13,16 +13,16 @@ FROM wget AS rocm
|
||||
ARG ROCM
|
||||
ARG AMDGPU
|
||||
|
||||
RUN apt update && \
|
||||
RUN apt update -qq && \
|
||||
apt install -y wget gpg && \
|
||||
wget -O rocm.deb https://repo.radeon.com/amdgpu-install/$ROCM/ubuntu/jammy/amdgpu-install_6.3.60303-1_all.deb && \
|
||||
wget -O rocm.deb https://repo.radeon.com/amdgpu-install/7.0.2/ubuntu/jammy/amdgpu-install_7.0.2.70002-1_all.deb && \
|
||||
apt install -y ./rocm.deb && \
|
||||
apt update && \
|
||||
apt install -y rocm
|
||||
apt install -qq -y rocm
|
||||
|
||||
RUN mkdir -p /opt/rocm-dist/opt/rocm-$ROCM/lib
|
||||
RUN cd /opt/rocm-$ROCM/lib && \
|
||||
cp -dpr libMIOpen*.so* libamd*.so* libhip*.so* libhsa*.so* libmigraphx*.so* librocm*.so* librocblas*.so* libroctracer*.so* librocsolver*.so* librocfft*.so* librocprofiler*.so* libroctx*.so* /opt/rocm-dist/opt/rocm-$ROCM/lib/ && \
|
||||
cp -dpr libMIOpen*.so* libamd*.so* libhip*.so* libhsa*.so* libmigraphx*.so* librocm*.so* librocblas*.so* libroctracer*.so* librocsolver*.so* librocfft*.so* librocprofiler*.so* libroctx*.so* librocroller.so* /opt/rocm-dist/opt/rocm-$ROCM/lib/ && \
|
||||
mkdir -p /opt/rocm-dist/opt/rocm-$ROCM/lib/migraphx/lib && \
|
||||
cp -dpr migraphx/lib/* /opt/rocm-dist/opt/rocm-$ROCM/lib/migraphx/lib
|
||||
RUN cd /opt/rocm-dist/opt/ && ln -s rocm-$ROCM rocm
|
||||
@ -33,7 +33,10 @@ RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
|
||||
#######################################################################
|
||||
FROM deps AS deps-prelim
|
||||
|
||||
RUN apt-get update && apt-get install -y libnuma1
|
||||
COPY docker/rocm/debian-backports.sources /etc/apt/sources.list.d/debian-backports.sources
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libnuma1 && \
|
||||
apt-get install -qq -y -t bookworm-backports mesa-va-drivers mesa-vulkan-drivers
|
||||
|
||||
WORKDIR /opt/frigate
|
||||
COPY --from=rootfs / /
|
||||
@ -44,7 +47,7 @@ RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
|
||||
COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
|
||||
RUN pip3 uninstall -y onnxruntime-openvino \
|
||||
RUN pip3 uninstall -y onnxruntime \
|
||||
&& pip3 install -r /requirements.txt
|
||||
|
||||
#######################################################################
|
||||
@ -61,9 +64,10 @@ COPY --from=rocm /opt/rocm-dist/ /
|
||||
|
||||
#######################################################################
|
||||
FROM deps-prelim AS rocm-prelim-hsa-override0
|
||||
ENV HSA_ENABLE_SDMA=0
|
||||
ENV MIGRAPHX_ENABLE_NHWC=1
|
||||
ENV TF_ROCM_USE_IMMEDIATE_MODE=1
|
||||
ENV MIGRAPHX_DISABLE_MIOPEN_FUSION=1
|
||||
ENV MIGRAPHX_DISABLE_SCHEDULE_PASS=1
|
||||
ENV MIGRAPHX_DISABLE_REDUCE_FUSION=1
|
||||
ENV MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS=1
|
||||
|
||||
COPY --from=rocm-dist / /
|
||||
|
||||
|
||||
6
docker/rocm/debian-backports.sources
Normal file
6
docker/rocm/debian-backports.sources
Normal file
@ -0,0 +1,6 @@
|
||||
Types: deb
|
||||
URIs: http://deb.debian.org/debian
|
||||
Suites: bookworm-backports
|
||||
Components: main
|
||||
Enabled: yes
|
||||
Signed-By: /usr/share/keyrings/debian-archive-keyring.gpg
|
||||
@ -1 +1 @@
|
||||
onnxruntime-rocm @ https://github.com/NickM-27/frigate-onnxruntime-rocm/releases/download/v6.3.3/onnxruntime_rocm-1.20.1-cp311-cp311-linux_x86_64.whl
|
||||
onnxruntime-migraphx @ https://github.com/NickM-27/frigate-onnxruntime-rocm/releases/download/v7.0.2/onnxruntime_migraphx-1.23.1-cp311-cp311-linux_x86_64.whl
|
||||
@ -2,7 +2,7 @@ variable "AMDGPU" {
|
||||
default = "gfx900"
|
||||
}
|
||||
variable "ROCM" {
|
||||
default = "6.3.3"
|
||||
default = "7.0.2"
|
||||
}
|
||||
variable "HSA_OVERRIDE_GFX_VERSION" {
|
||||
default = ""
|
||||
|
||||
28
docker/synaptics/Dockerfile
Normal file
28
docker/synaptics/Dockerfile
Normal file
@ -0,0 +1,28 @@
|
||||
# syntax=docker/dockerfile:1.6
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Globally set pip break-system-packages option to avoid having to specify it every time
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES=1
|
||||
|
||||
FROM wheels AS synap1680-wheels
|
||||
ARG TARGETARCH
|
||||
|
||||
# Install dependencies
|
||||
RUN wget -qO- "https://github.com/GaryHuang-ASUS/synaptics_astra_sdk/releases/download/v1.5.0/Synaptics-SL1680-v1.5.0-rt.tar" | tar -C / -xzf -
|
||||
RUN wget -P /wheels/ "https://github.com/synaptics-synap/synap-python/releases/download/v0.0.4-preview/synap_python-0.0.4-cp311-cp311-manylinux_2_35_aarch64.whl"
|
||||
|
||||
FROM deps AS synap1680-deps
|
||||
ARG TARGETARCH
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
RUN --mount=type=bind,from=synap1680-wheels,source=/wheels,target=/deps/synap-wheels \
|
||||
pip3 install --no-deps -U /deps/synap-wheels/*.whl
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
|
||||
COPY --from=synap1680-wheels /rootfs/usr/local/lib/*.so /usr/lib
|
||||
|
||||
ADD https://raw.githubusercontent.com/synaptics-astra/synap-release/v1.5.0/models/dolphin/object_detection/coco/model/mobilenet224_full80/model.synap /synaptics/mobilenet.synap
|
||||
27
docker/synaptics/synaptics.hcl
Normal file
27
docker/synaptics/synaptics.hcl
Normal file
@ -0,0 +1,27 @@
|
||||
target wheels {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64"]
|
||||
target = "wheels"
|
||||
}
|
||||
|
||||
target deps {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64"]
|
||||
target = "deps"
|
||||
}
|
||||
|
||||
target rootfs {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64"]
|
||||
target = "rootfs"
|
||||
}
|
||||
|
||||
target synaptics {
|
||||
dockerfile = "docker/synaptics/Dockerfile"
|
||||
contexts = {
|
||||
wheels = "target:wheels",
|
||||
deps = "target:deps",
|
||||
rootfs = "target:rootfs"
|
||||
}
|
||||
platforms = ["linux/arm64"]
|
||||
}
|
||||
15
docker/synaptics/synaptics.mk
Normal file
15
docker/synaptics/synaptics.mk
Normal file
@ -0,0 +1,15 @@
|
||||
BOARDS += synaptics
|
||||
|
||||
local-synaptics: version
|
||||
docker buildx bake --file=docker/synaptics/synaptics.hcl synaptics \
|
||||
--set synaptics.tags=frigate:latest-synaptics \
|
||||
--load
|
||||
|
||||
build-synaptics: version
|
||||
docker buildx bake --file=docker/synaptics/synaptics.hcl synaptics \
|
||||
--set synaptics.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-synaptics
|
||||
|
||||
push-synaptics: build-synaptics
|
||||
docker buildx bake --file=docker/synaptics/synaptics.hcl synaptics \
|
||||
--set synaptics.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-synaptics \
|
||||
--push
|
||||
@ -12,13 +12,16 @@ ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
# Install TensorRT wheels
|
||||
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/trt-wheels -c /requirements-wheels.txt -r /requirements-tensorrt.txt
|
||||
|
||||
# remove dependencies from the requirements that have type constraints
|
||||
RUN sed -i '/\[.*\]/d' /requirements-wheels.txt \
|
||||
&& pip3 wheel --wheel-dir=/trt-wheels -c /requirements-wheels.txt -r /requirements-tensorrt.txt
|
||||
|
||||
FROM deps AS frigate-tensorrt
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 uninstall -y onnxruntime-openvino tensorflow-cpu \
|
||||
pip3 uninstall -y onnxruntime \
|
||||
&& pip3 install -U /deps/trt-wheels/*.whl
|
||||
|
||||
COPY --from=rootfs / /
|
||||
|
||||
@ -112,7 +112,7 @@ RUN apt-get update \
|
||||
&& apt-get install -y protobuf-compiler libprotobuf-dev \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
RUN --mount=type=bind,source=docker/tensorrt/requirements-models-arm64.txt,target=/requirements-tensorrt-models.txt \
|
||||
pip3 wheel --wheel-dir=/trt-model-wheels -r /requirements-tensorrt-models.txt
|
||||
pip3 wheel --wheel-dir=/trt-model-wheels --no-deps -r /requirements-tensorrt-models.txt
|
||||
|
||||
FROM wget AS jetson-ffmpeg
|
||||
ARG DEBIAN_FRONTEND
|
||||
@ -145,7 +145,8 @@ COPY --from=trt-wheels /etc/TENSORRT_VER /etc/TENSORRT_VER
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
--mount=type=bind,from=trt-model-wheels,source=/trt-model-wheels,target=/deps/trt-model-wheels \
|
||||
pip3 uninstall -y onnxruntime \
|
||||
&& pip3 install -U /deps/trt-wheels/*.whl /deps/trt-model-wheels/*.whl \
|
||||
&& pip3 install -U /deps/trt-wheels/*.whl \
|
||||
&& pip3 install -U /deps/trt-model-wheels/*.whl \
|
||||
&& ldconfig
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
|
||||
@ -14,5 +14,5 @@ nvidia_cusparse_cu12==12.5.1.*; platform_machine == 'x86_64'
|
||||
nvidia_nccl_cu12==2.23.4; platform_machine == 'x86_64'
|
||||
nvidia_nvjitlink_cu12==12.5.82; platform_machine == 'x86_64'
|
||||
onnx==1.16.*; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.20.*; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.22.*; platform_machine == 'x86_64'
|
||||
protobuf==3.20.3; platform_machine == 'x86_64'
|
||||
|
||||
@ -1 +1,2 @@
|
||||
cuda-python == 12.6.*; platform_machine == 'aarch64'
|
||||
numpy == 1.26.*; platform_machine == 'aarch64'
|
||||
|
||||
@ -1,3 +1,2 @@
|
||||
onnx == 1.14.0; platform_machine == 'aarch64'
|
||||
protobuf == 3.20.3; platform_machine == 'aarch64'
|
||||
numpy == 1.23.*; platform_machine == 'aarch64' # required by python-tensorrt 8.2.1 (Jetpack 4.6)
|
||||
|
||||
@ -177,9 +177,11 @@ listen [::]:5000 ipv6only=off;
|
||||
By default, Frigate runs at the root path (`/`). However some setups require to run Frigate under a custom path prefix (e.g. `/frigate`), especially when Frigate is located behind a reverse proxy that requires path-based routing.
|
||||
|
||||
### Set Base Path via HTTP Header
|
||||
|
||||
The preferred way to configure the base path is through the `X-Ingress-Path` HTTP header, which needs to be set to the desired base path in an upstream reverse proxy.
|
||||
|
||||
For example, in Nginx:
|
||||
|
||||
```
|
||||
location /frigate {
|
||||
proxy_set_header X-Ingress-Path /frigate;
|
||||
@ -188,9 +190,11 @@ location /frigate {
|
||||
```
|
||||
|
||||
### Set Base Path via Environment Variable
|
||||
|
||||
When it is not feasible to set the base path via a HTTP header, it can also be set via the `FRIGATE_BASE_PATH` environment variable in the Docker Compose file.
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
services:
|
||||
frigate:
|
||||
@ -200,6 +204,7 @@ services:
|
||||
```
|
||||
|
||||
This can be used for example to access Frigate via a Tailscale agent (https), by simply forwarding all requests to the base path (http):
|
||||
|
||||
```
|
||||
tailscale serve --https=443 --bg --set-path /frigate http://localhost:5000/frigate
|
||||
```
|
||||
@ -218,7 +223,7 @@ To do this:
|
||||
|
||||
### Custom go2rtc version
|
||||
|
||||
Frigate currently includes go2rtc v1.9.9, there may be certain cases where you want to run a different version of go2rtc.
|
||||
Frigate currently includes go2rtc v1.9.10, there may be certain cases where you want to run a different version of go2rtc.
|
||||
|
||||
To do this:
|
||||
|
||||
|
||||
@ -50,7 +50,7 @@ cameras:
|
||||
|
||||
### Configuring Minimum Volume
|
||||
|
||||
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widely between camera models so it is important to run tests to see what volume levels are. MQTT explorer can be used on the audio topic to see what volume level is being detected.
|
||||
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widely between camera models so it is important to run tests to see what volume levels are. The Debug view in the Frigate UI has an Audio tab for cameras that have the `audio` role assigned where a graph and the current levels are is displayed. The `min_volume` parameter should be set to the minimum the `RMS` level required to run audio detection.
|
||||
|
||||
:::tip
|
||||
|
||||
@ -72,3 +72,76 @@ audio:
|
||||
- speech
|
||||
- yell
|
||||
```
|
||||
|
||||
### Audio Transcription
|
||||
|
||||
Frigate supports fully local audio transcription using either `sherpa-onnx` or OpenAI’s open-source Whisper models via `faster-whisper`. To enable transcription, enable it in your config. Note that audio detection must also be enabled as described above in order to use audio transcription features.
|
||||
|
||||
```yaml
|
||||
audio_transcription:
|
||||
enabled: True
|
||||
device: ...
|
||||
model_size: ...
|
||||
```
|
||||
|
||||
Disable audio transcription for select cameras at the camera level:
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
back_yard:
|
||||
...
|
||||
audio_transcription:
|
||||
enabled: False
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
Audio detection must be enabled and configured as described above in order to use audio transcription features.
|
||||
|
||||
:::
|
||||
|
||||
The optional config parameters that can be set at the global level include:
|
||||
|
||||
- **`enabled`**: Enable or disable the audio transcription feature.
|
||||
- Default: `False`
|
||||
- It is recommended to only configure the features at the global level, and enable it at the individual camera level.
|
||||
- **`device`**: Device to use to run transcription and translation models.
|
||||
- Default: `CPU`
|
||||
- This can be `CPU` or `GPU`. The `sherpa-onnx` models are lightweight and run on the CPU only. The `whisper` models can run on GPU but are only supported on CUDA hardware.
|
||||
- **`model_size`**: The size of the model used for live transcription.
|
||||
- Default: `small`
|
||||
- This can be `small` or `large`. The `small` setting uses `sherpa-onnx` models that are fast, lightweight, and always run on the CPU but are not as accurate as the `whisper` model.
|
||||
- This config option applies to **live transcription only**. Recorded `speech` events will always use a different `whisper` model (and can be accelerated for CUDA hardware if available with `device: GPU`).
|
||||
- **`language`**: Defines the language used by `whisper` to translate `speech` audio events (and live audio only if using the `large` model).
|
||||
- Default: `en`
|
||||
- You must use a valid [language code](https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10).
|
||||
- Transcriptions for `speech` events are translated.
|
||||
- Live audio is translated only if you are using the `large` model. The `small` `sherpa-onnx` model is English-only.
|
||||
|
||||
The only field that is valid at the camera level is `enabled`.
|
||||
|
||||
#### Live transcription
|
||||
|
||||
The single camera Live view in the Frigate UI supports live transcription of audio for streams defined with the `audio` role. Use the Enable/Disable Live Audio Transcription button/switch to toggle transcription processing. When speech is heard, the UI will display a black box over the top of the camera stream with text. The MQTT topic `frigate/<camera_name>/audio/transcription` will also be updated in real-time with transcribed text.
|
||||
|
||||
Results can be error-prone due to a number of factors, including:
|
||||
|
||||
- Poor quality camera microphone
|
||||
- Distance of the audio source to the camera microphone
|
||||
- Low audio bitrate setting in the camera
|
||||
- Background noise
|
||||
- Using the `small` model - it's fast, but not accurate for poor quality audio
|
||||
|
||||
For speech sources close to the camera with minimal background noise, use the `small` model.
|
||||
|
||||
If you have CUDA hardware, you can experiment with the `large` `whisper` model on GPU. Performance is not quite as fast as the `sherpa-onnx` `small` model, but live transcription is far more accurate. Using the `large` model with CPU will likely be too slow for real-time transcription.
|
||||
|
||||
#### Transcription and translation of `speech` audio events
|
||||
|
||||
Any `speech` events in Explore can be transcribed and/or translated through the Transcribe button in the Tracked Object Details pane.
|
||||
|
||||
In order to use transcription and translation for past events, you must enable audio detection and define `speech` as an audio type to listen for in your config. To have `speech` events translated into the language of your choice, set the `language` config parameter with the correct [language code](https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10).
|
||||
|
||||
The transcribed/translated speech will appear in the description box in the Tracked Object Details pane. If Semantic Search is enabled, embeddings are generated for the transcription text and are fully searchable using the description search type.
|
||||
|
||||
Recorded `speech` events will always use a `whisper` model, regardless of the `model_size` config setting. Without a GPU, generating transcriptions for longer `speech` events may take a fair amount of time, so be patient.
|
||||
|
||||
@ -59,6 +59,7 @@ The default session length for user authentication in Frigate is 24 hours. This
|
||||
While the default provides a balance of security and convenience, you can customize this duration to suit your specific security requirements and user experience preferences. The session length is configured in seconds.
|
||||
|
||||
The default value of `86400` will expire the authentication session after 24 hours. Some other examples:
|
||||
|
||||
- `0`: Setting the session length to 0 will require a user to log in every time they access the application or after a very short, immediate timeout.
|
||||
- `604800`: Setting the session length to 604800 will require a user to log in if the token is not refreshed for 7 days.
|
||||
|
||||
@ -80,7 +81,7 @@ python3 -c 'import secrets; print(secrets.token_hex(64))'
|
||||
Frigate looks for a JWT token secret in the following order:
|
||||
|
||||
1. An environment variable named `FRIGATE_JWT_SECRET`
|
||||
2. A docker secret named `FRIGATE_JWT_SECRET` in `/run/secrets/`
|
||||
2. A file named `FRIGATE_JWT_SECRET` in the directory specified by the `CREDENTIALS_DIRECTORY` environment variable (defaults to the Docker Secrets directory: `/run/secrets/`)
|
||||
3. A `jwt_secret` option from the Home Assistant Add-on options
|
||||
4. A `.jwt_secret` file in the config directory
|
||||
|
||||
@ -123,7 +124,7 @@ proxy:
|
||||
role: x-forwarded-groups
|
||||
```
|
||||
|
||||
Frigate supports both `admin` and `viewer` roles (see below). When using port `8971`, Frigate validates these headers and subsequent requests use the headers `remote-user` and `remote-role` for authorization.
|
||||
Frigate supports `admin`, `viewer`, and custom roles (see below). When using port `8971`, Frigate validates these headers and subsequent requests use the headers `remote-user` and `remote-role` for authorization.
|
||||
|
||||
A default role can be provided. Any value in the mapped `role` header will override the default.
|
||||
|
||||
@ -133,6 +134,34 @@ proxy:
|
||||
default_role: viewer
|
||||
```
|
||||
|
||||
## Role mapping
|
||||
|
||||
In some environments, upstream identity providers (OIDC, SAML, LDAP, etc.) do not pass a Frigate-compatible role directly, but instead pass one or more group claims. To handle this, Frigate supports a `role_map` that translates upstream group names into Frigate’s internal roles (`admin`, `viewer`, or custom).
|
||||
|
||||
```yaml
|
||||
proxy:
|
||||
...
|
||||
header_map:
|
||||
user: x-forwarded-user
|
||||
role: x-forwarded-groups
|
||||
role_map:
|
||||
admin:
|
||||
- sysadmins
|
||||
- access-level-security
|
||||
viewer:
|
||||
- camera-viewer
|
||||
operator: # Custom role mapping
|
||||
- operators
|
||||
```
|
||||
|
||||
In this example:
|
||||
|
||||
- If the proxy passes a role header containing `sysadmins` or `access-level-security`, the user is assigned the `admin` role.
|
||||
- If the proxy passes a role header containing `camera-viewer`, the user is assigned the `viewer` role.
|
||||
- If the proxy passes a role header containing `operators`, the user is assigned the `operator` custom role.
|
||||
- If no mapping matches, Frigate falls back to `default_role` if configured.
|
||||
- If `role_map` is not defined, Frigate assumes the role header directly contains `admin`, `viewer`, or a custom role name.
|
||||
|
||||
#### Port Considerations
|
||||
|
||||
**Authenticated Port (8971)**
|
||||
@ -141,6 +170,7 @@ proxy:
|
||||
- The `remote-role` header determines the user’s privileges:
|
||||
- **admin** → Full access (user management, configuration changes).
|
||||
- **viewer** → Read-only access.
|
||||
- **Custom roles** → Read-only access limited to the cameras defined in `auth.roles[role]`.
|
||||
- Ensure your **proxy sends both user and role headers** for proper role enforcement.
|
||||
|
||||
**Unauthenticated Port (5000)**
|
||||
@ -186,6 +216,41 @@ Frigate supports user roles to control access to certain features in the UI and
|
||||
|
||||
- **admin**: Full access to all features, including user management and configuration.
|
||||
- **viewer**: Read-only access to the UI and API, including viewing cameras, review items, and historical footage. Configuration editor and settings in the UI are inaccessible.
|
||||
- **Custom Roles**: Arbitrary role names (alphanumeric, dots/underscores) with specific camera permissions. These extend the system for granular access (e.g., "operator" for select cameras).
|
||||
|
||||
### Custom Roles and Camera Access
|
||||
|
||||
The viewer role provides read-only access to all cameras in the UI and API. Custom roles allow admins to limit read-only access to specific cameras. Each role specifies an array of allowed camera names. If a user is assigned a custom role, their account is like the **viewer** role - they can only view Live, Review/History, Explore, and Export for the designated cameras. Backend API endpoints enforce this server-side (e.g., returning 403 for unauthorized cameras), and the frontend UI filters content accordingly (e.g., camera dropdowns show only permitted options).
|
||||
|
||||
### Role Configuration Example
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
# ... camera config
|
||||
side_yard:
|
||||
# ... camera config
|
||||
garage:
|
||||
# ... camera config
|
||||
|
||||
auth:
|
||||
enabled: true
|
||||
roles:
|
||||
operator: # Custom role
|
||||
- front_door
|
||||
- garage # Operator can access front and garage
|
||||
neighbor:
|
||||
- side_yard
|
||||
```
|
||||
|
||||
If you want to provide access to all cameras to a specific user, just use the **viewer** role.
|
||||
|
||||
### Managing User Roles
|
||||
|
||||
1. Log in as an **admin** user via port `8971` (preferred), or unauthenticated via port `5000`.
|
||||
2. Navigate to **Settings**.
|
||||
3. In the **Users** section, edit a user’s role by selecting from available roles (admin, viewer, or custom).
|
||||
4. In the **Roles** section, add/edit/delete custom roles (select cameras via switches). Deleting a role auto-reassigns users to "viewer".
|
||||
|
||||
### Role Enforcement
|
||||
|
||||
|
||||
@ -21,7 +21,7 @@ Frigate autotracking functions with PTZ cameras capable of relative movement wit
|
||||
|
||||
Many cheaper or older PTZs may not support this standard. Frigate will report an error message in the log and disable autotracking if your PTZ is unsupported.
|
||||
|
||||
Alternatively, you can download and run [this simple Python script](https://gist.github.com/hawkeye217/152a1d4ba80760dac95d46e143d37112), replacing the details on line 4 with your camera's IP address, ONVIF port, username, and password to check your camera.
|
||||
The FeatureList on the [ONVIF Conformant Products Database](https://www.onvif.org/conformant-products/) can provide a starting point to determine a camera's compatibility with Frigate's autotracking. Look to see if a camera lists `PTZRelative`, `PTZRelativePanTilt` and/or `PTZRelativeZoom`. These features are required for autotracking, but some cameras still fail to respond even if they claim support.
|
||||
|
||||
A growing list of cameras and brands that have been reported by users to work with Frigate's autotracking can be found [here](cameras.md).
|
||||
|
||||
|
||||
@ -147,7 +147,7 @@ WEB Digest Algorithm - MD5
|
||||
Reolink has many different camera models with inconsistently supported features and behavior. The below table shows a summary of various features and recommendations.
|
||||
|
||||
| Camera Resolution | Camera Generation | Recommended Stream Type | Additional Notes |
|
||||
| ---------------- | ------------------------- | -------------------------------- | ----------------------------------------------------------------------- |
|
||||
| ----------------- | ------------------------- | --------------------------------- | ----------------------------------------------------------------------- |
|
||||
| 5MP or lower | All | http-flv | Stream is h264 |
|
||||
| 6MP or higher | Latest (ex: Duo3, CX-8##) | http-flv with ffmpeg 8.0, or rtsp | This uses the new http-flv-enhanced over H265 which requires ffmpeg 8.0 |
|
||||
| 6MP or higher | Older (ex: RLC-8##) | rtsp | |
|
||||
@ -238,7 +238,7 @@ go2rtc:
|
||||
- rtspx://192.168.1.1:7441/abcdefghijk
|
||||
```
|
||||
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#source-rtsp)
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-rtsp)
|
||||
|
||||
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.
|
||||
|
||||
@ -257,6 +257,7 @@ TP-Link VIGI cameras need some adjustments to the main stream settings on the ca
|
||||
To use a USB camera (webcam) with Frigate, the recommendation is to use go2rtc's [FFmpeg Device](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#source-ffmpeg-device) support:
|
||||
|
||||
- Preparation outside of Frigate:
|
||||
|
||||
- Get USB camera path. Run `v4l2-ctl --list-devices` to get a listing of locally-connected cameras available. (You may need to install `v4l-utils` in a way appropriate for your Linux distribution). In the sample configuration below, we use `video=0` to correlate with a detected device path of `/dev/video0`
|
||||
- Get USB camera formats & resolutions. Run `ffmpeg -f v4l2 -list_formats all -i /dev/video0` to get an idea of what formats and resolutions the USB Camera supports. In the sample configuration below, we use a width of 1024 and height of 576 in the stream and detection settings based on what was reported back.
|
||||
- If using Frigate in a container (e.g. Docker on TrueNAS), ensure you have USB Passthrough support enabled, along with a specific Host Device (`/dev/video0`) + Container Device (`/dev/video0`) listed.
|
||||
@ -284,5 +285,3 @@ cameras:
|
||||
width: 1024
|
||||
height: 576
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -89,31 +89,35 @@ An ONVIF-capable camera that supports relative movement within the field of view
|
||||
|
||||
## ONVIF PTZ camera recommendations
|
||||
|
||||
This list of working and non-working PTZ cameras is based on user feedback.
|
||||
This list of working and non-working PTZ cameras is based on user feedback. If you'd like to report specific quirks or issues with a manufacturer or camera that would be helpful for other users, open a pull request to add to this list.
|
||||
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
|
||||
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
|
||||
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
|
||||
| Annke CZ504 | ✅ | ✅ | Annke support provide specific firmware ([V5.7.1 build 250227](https://github.com/pierrepinon/annke_cz504/raw/refs/heads/main/digicap_V5-7-1_build_250227.dav)) to fix issue with ONVIF "TranslationSpaceFov" |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | Some low-end Dahuas (lite series, among others) have been reported to not support autotracking |
|
||||
| Dahua DH-SD2A500HB | ✅ | ❌ | |
|
||||
| Dahua DH-SD49825GB-HNR | ✅ | ✅ | |
|
||||
| Dahua DH-P5AE-PV | ❌ | ❌ | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Hikvision DS-2DE3A404IWG-E/W | ✅ | ✅ | |
|
||||
| Reolink | ✅ | ❌ | |
|
||||
| Speco O8P32X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
The FeatureList on the [ONVIF Conformant Products Database](https://www.onvif.org/conformant-products/) can provide a starting point to determine a camera's compatibility with Frigate's autotracking. Look to see if a camera lists `PTZRelative`, `PTZRelativePanTilt` and/or `PTZRelativeZoom`. These features are required for autotracking, but some cameras still fail to respond even if they claim support. If they are missing, autotracking will not work (though basic PTZ in the WebUI might). Avoid cameras with no database entry unless they are confirmed as working below.
|
||||
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
|
||||
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
|
||||
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
|
||||
| Annke CZ504 | ✅ | ✅ | Annke support provide specific firmware ([V5.7.1 build 250227](https://github.com/pierrepinon/annke_cz504/raw/refs/heads/main/digicap_V5-7-1_build_250227.dav)) to fix issue with ONVIF "TranslationSpaceFov" |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | Some low-end Dahuas (lite series, picoo series (commonly), among others) have been reported to not support autotracking. These models usually don't have a four digit model number with chassis prefix and options postfix (e.g. DH-P5AE-PV vs DH-SD49825GB-HNR). |
|
||||
| Dahua DH-SD2A500HB | ✅ | ❌ | |
|
||||
| Dahua DH-SD49825GB-HNR | ✅ | ✅ | |
|
||||
| Dahua DH-P5AE-PV | ❌ | ❌ | |
|
||||
| Foscam | ✅ | ❌ | In general support PTZ, but not relative move. There are no official ONVIF certifications and tests available on the ONVIF Conformant Products Database | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Foscam SD4 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Hikvision DS-2DE3A404IWG-E/W | ✅ | ✅ | |
|
||||
| Reolink | ✅ | ❌ | |
|
||||
| Speco O8P32X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
|
||||
## Setting up camera groups
|
||||
|
||||
@ -134,3 +138,7 @@ camera_groups:
|
||||
icon: LuCar
|
||||
order: 0
|
||||
```
|
||||
|
||||
## Two-Way Audio
|
||||
|
||||
See the guide [here](/configuration/live/#two-way-talk)
|
||||
|
||||
@ -0,0 +1,83 @@
|
||||
---
|
||||
id: object_classification
|
||||
title: Object Classification
|
||||
---
|
||||
|
||||
Object classification allows you to train a custom MobileNetV2 classification model to run on tracked objects (persons, cars, animals, etc.) to identify a finer category or attribute for that object.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
Object classification models are lightweight and run very fast on CPU. Inference should be usable on virtually any machine that can run Frigate.
|
||||
|
||||
Training the model does briefly use a high amount of system resources for about 1–3 minutes per training run. On lower-power devices, training may take longer.
|
||||
|
||||
## Classes
|
||||
|
||||
Classes are the categories your model will learn to distinguish between. Each class represents a distinct visual category that the model will predict.
|
||||
|
||||
For object classification:
|
||||
|
||||
- Define classes that represent different types or attributes of the detected object
|
||||
- Examples: For `person` objects, classes might be `delivery_person`, `resident`, `stranger`
|
||||
- Include a `none` class for objects that don't fit any specific category
|
||||
- Keep classes visually distinct to improve accuracy
|
||||
|
||||
### Classification Type
|
||||
|
||||
- **Sub label**:
|
||||
|
||||
- Applied to the object’s `sub_label` field.
|
||||
- Ideal for a single, more specific identity or type.
|
||||
- Example: `cat` → `Leo`, `Charlie`, `None`.
|
||||
|
||||
- **Attribute**:
|
||||
- Added as metadata to the object (visible in /events): `<model_name>: <predicted_value>`.
|
||||
- Ideal when multiple attributes can coexist independently.
|
||||
- Example: Detecting if a `person` in a construction yard is wearing a helmet or not.
|
||||
|
||||
## Example use cases
|
||||
|
||||
### Sub label
|
||||
|
||||
- **Known pet vs unknown**: For `dog` objects, set sub label to your pet’s name (e.g., `buddy`) or `none` for others.
|
||||
- **Mail truck vs normal car**: For `car`, classify as `mail_truck` vs `car` to filter important arrivals.
|
||||
- **Delivery vs non-delivery person**: For `person`, classify `delivery` vs `visitor` based on uniform/props.
|
||||
|
||||
### Attributes
|
||||
|
||||
- **Backpack**: For `person`, add attribute `backpack: yes/no`.
|
||||
- **Helmet**: For `person` (worksite), add `helmet: yes/no`.
|
||||
- **Leash**: For `dog`, add `leash: yes/no` (useful for park or yard rules).
|
||||
- **Ladder rack**: For `truck`, add `ladder_rack: yes/no` to flag service vehicles.
|
||||
|
||||
## Configuration
|
||||
|
||||
Object classification is configured as a custom classification model. Each model has its own name and settings. You must list which object labels should be classified.
|
||||
|
||||
```yaml
|
||||
classification:
|
||||
custom:
|
||||
dog:
|
||||
threshold: 0.8
|
||||
object_config:
|
||||
objects: [dog] # object labels to classify
|
||||
classification_type: sub_label # or: attribute
|
||||
```
|
||||
|
||||
## Training the model
|
||||
|
||||
Creating and training the model is done within the Frigate UI using the `Classification` page.
|
||||
|
||||
### Getting Started
|
||||
|
||||
When choosing which objects to classify, start with a small number of visually distinct classes and ensure your training samples match camera viewpoints and distances typical for those objects.
|
||||
|
||||
// TODO add this section once UI is implemented. Explain process of selecting objects and curating training examples.
|
||||
|
||||
### Improving the Model
|
||||
|
||||
- **Problem framing**: Keep classes visually distinct and relevant to the chosen object types.
|
||||
- **Data collection**: Use the model’s Recent Classification tab to gather balanced examples across times of day, weather, and distances.
|
||||
- **Preprocessing**: Ensure examples reflect object crops similar to Frigate’s boxes; keep the subject centered.
|
||||
- **Labels**: Keep label names short and consistent; include a `none` class if you plan to ignore uncertain predictions for sub labels.
|
||||
- **Threshold**: Tune `threshold` per model to reduce false assignments. Start at `0.8` and adjust based on validation.
|
||||
@ -0,0 +1,62 @@
|
||||
---
|
||||
id: state_classification
|
||||
title: State Classification
|
||||
---
|
||||
|
||||
State classification allows you to train a custom MobileNetV2 classification model on a fixed region of your camera frame(s) to determine a current state. The model can be configured to run on a schedule and/or when motion is detected in that region.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
State classification models are lightweight and run very fast on CPU. Inference should be usable on virtually any machine that can run Frigate.
|
||||
|
||||
Training the model does briefly use a high amount of system resources for about 1–3 minutes per training run. On lower-power devices, training may take longer.
|
||||
|
||||
## Classes
|
||||
|
||||
Classes are the different states an area on your camera can be in. Each class represents a distinct visual state that the model will learn to recognize.
|
||||
|
||||
For state classification:
|
||||
|
||||
- Define classes that represent mutually exclusive states
|
||||
- Examples: `open` and `closed` for a garage door, `on` and `off` for lights
|
||||
- Use at least 2 classes (typically binary states work best)
|
||||
- Keep class names clear and descriptive
|
||||
|
||||
## Example use cases
|
||||
|
||||
- **Door state**: Detect if a garage or front door is open vs closed.
|
||||
- **Gate state**: Track if a driveway gate is open or closed.
|
||||
- **Trash day**: Bins at curb vs no bins present.
|
||||
- **Pool cover**: Cover on vs off.
|
||||
|
||||
## Configuration
|
||||
|
||||
State classification is configured as a custom classification model. Each model has its own name and settings. You must provide at least one camera crop under `state_config.cameras`.
|
||||
|
||||
```yaml
|
||||
classification:
|
||||
custom:
|
||||
front_door:
|
||||
threshold: 0.8
|
||||
state_config:
|
||||
motion: true # run when motion overlaps the crop
|
||||
interval: 10 # also run every N seconds (optional)
|
||||
cameras:
|
||||
front:
|
||||
crop: [0, 180, 220, 400]
|
||||
```
|
||||
|
||||
## Training the model
|
||||
|
||||
Creating and training the model is done within the Frigate UI using the `Classification` page.
|
||||
|
||||
### Getting Started
|
||||
|
||||
When choosing a portion of the camera frame for state classification, it is important to make the crop tight around the area of interest to avoid extra signals unrelated to what is being classified.
|
||||
|
||||
// TODO add this section once UI is implemented. Explain process of selecting a crop.
|
||||
|
||||
### Improving the Model
|
||||
|
||||
- **Problem framing**: Keep classes visually distinct and state-focused (e.g., `open`, `closed`, `unknown`). Avoid combining object identity with state in a single model unless necessary.
|
||||
- **Data collection**: Use the model’s Recent Classifications tab to gather balanced examples across times of day and weather.
|
||||
@ -24,7 +24,7 @@ Frigate needs to first detect a `person` before it can detect and recognize a fa
|
||||
Frigate has support for two face recognition model types:
|
||||
|
||||
- **small**: Frigate will run a FaceNet embedding model to recognize faces, which runs locally on the CPU. This model is optimized for efficiency and is not as accurate.
|
||||
- **large**: Frigate will run a large ArcFace embedding model that is optimized for accuracy. It is only recommended to be run when an integrated or dedicated GPU is available.
|
||||
- **large**: Frigate will run a large ArcFace embedding model that is optimized for accuracy. It is only recommended to be run when an integrated or dedicated GPU / NPU is available.
|
||||
|
||||
In both cases, a lightweight face landmark detection model is also used to align faces before running recognition.
|
||||
|
||||
@ -34,7 +34,7 @@ All of these features run locally on your system.
|
||||
|
||||
The `small` model is optimized for efficiency and runs on the CPU, most CPUs should run the model efficiently.
|
||||
|
||||
The `large` model is optimized for accuracy, an integrated or discrete GPU is required. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
||||
The `large` model is optimized for accuracy, an integrated or discrete GPU / NPU is required. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
||||
|
||||
## Configuration
|
||||
|
||||
@ -70,9 +70,12 @@ Fine-tune face recognition with these optional parameters at the global level of
|
||||
- `min_faces`: Min face recognitions for the sub label to be applied to the person object.
|
||||
- Default: `1`
|
||||
- `save_attempts`: Number of images of recognized faces to save for training.
|
||||
- Default: `100`.
|
||||
- Default: `200`.
|
||||
- `blur_confidence_filter`: Enables a filter that calculates how blurry the face is and adjusts the confidence based on this.
|
||||
- Default: `True`.
|
||||
- `device`: Target a specific device to run the face recognition model on (multi-GPU installation).
|
||||
- Default: `None`.
|
||||
- Note: This setting is only applicable when using the `large` model. See [onnxruntime's provider options](https://onnxruntime.ai/docs/execution-providers/)
|
||||
|
||||
## Usage
|
||||
|
||||
@ -111,9 +114,9 @@ When choosing images to include in the face training set it is recommended to al
|
||||
|
||||
:::
|
||||
|
||||
### Understanding the Train Tab
|
||||
### Understanding the Recent Recognitions Tab
|
||||
|
||||
The Train tab in the face library displays recent face recognition attempts. Detected face images are grouped according to the person they were identified as potentially matching.
|
||||
The Recent Recognitions tab in the face library displays recent face recognition attempts. Detected face images are grouped according to the person they were identified as potentially matching.
|
||||
|
||||
Each face image is labeled with a name (or `Unknown`) along with the confidence score of the recognition attempt. While each image can be used to train the system for a specific person, not all images are suitable for training.
|
||||
|
||||
@ -137,7 +140,7 @@ Once front-facing images are performing well, start choosing slightly off-angle
|
||||
|
||||
Start with the [Usage](#usage) section and re-read the [Model Requirements](#model-requirements) above.
|
||||
|
||||
1. Ensure `person` is being _detected_. A `person` will automatically be scanned by Frigate for a face. Any detected faces will appear in the Train tab in the Frigate UI's Face Library.
|
||||
1. Ensure `person` is being _detected_. A `person` will automatically be scanned by Frigate for a face. Any detected faces will appear in the Recent Recognitions tab in the Frigate UI's Face Library.
|
||||
|
||||
If you are using a Frigate+ or `face` detecting model:
|
||||
|
||||
@ -185,7 +188,7 @@ Avoid training on images that already score highly, as this can lead to over-fit
|
||||
No, face recognition does not support negative training (i.e., explicitly telling it who someone is _not_). Instead, the best approach is to improve the training data by using a more diverse and representative set of images for each person.
|
||||
For more guidance, refer to the section above on improving recognition accuracy.
|
||||
|
||||
### I see scores above the threshold in the train tab, but a sub label wasn't assigned?
|
||||
### I see scores above the threshold in the Recent Recognitions tab, but a sub label wasn't assigned?
|
||||
|
||||
The Frigate considers the recognition scores across all recognition attempts for each person object. The scores are continually weighted based on the area of the face, and a sub label will only be assigned to person if a person is confidently recognized consistently. This avoids cases where a single high confidence recognition would throw off the results.
|
||||
|
||||
|
||||
@ -9,13 +9,12 @@ Requests for a description are sent off automatically to your AI provider at the
|
||||
|
||||
## Configuration
|
||||
|
||||
Generative AI can be enabled for all cameras or only for specific cameras. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
|
||||
Generative AI can be enabled for all cameras or only for specific cameras. If GenAI is disabled for a camera, you can still manually generate descriptions for events using the HTTP API. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
|
||||
|
||||
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-2.0-flash
|
||||
@ -30,14 +29,17 @@ cameras:
|
||||
required_zones:
|
||||
- steps
|
||||
indoor_camera:
|
||||
genai:
|
||||
enabled: False # <- disable GenAI for your indoor camera
|
||||
objects:
|
||||
genai:
|
||||
enabled: False # <- disable GenAI for your indoor camera
|
||||
```
|
||||
|
||||
By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
Generative AI can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt/#frigatecamera_nameobjectdescriptionsset).
|
||||
|
||||
## Ollama
|
||||
|
||||
:::warning
|
||||
@ -66,7 +68,6 @@ You should have at least 8 GB of RAM available (or VRAM if running on GPU) to ru
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava:7b
|
||||
@ -93,7 +94,6 @@ To start using Gemini, you must first get an API key from [Google AI Studio](htt
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-2.0-flash
|
||||
@ -121,7 +121,6 @@ To start using OpenAI, you must first [create an API key](https://platform.opena
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: openai
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
model: gpt-4o
|
||||
@ -149,7 +148,6 @@ To start using Azure OpenAI, you must first [create a resource](https://learn.mi
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: azure_openai
|
||||
base_url: https://instance.cognitiveservices.azure.com/openai/responses?api-version=2025-04-01-preview
|
||||
model: gpt-5-mini
|
||||
@ -193,32 +191,35 @@ You are also able to define custom prompts in your configuration.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
|
||||
objects:
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
Prompts can also be overridden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
genai:
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
objects:
|
||||
genai:
|
||||
enabled: True
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
```
|
||||
|
||||
### Experiment with prompts
|
||||
|
||||
143
docs/docs/configuration/genai/config.md
Normal file
143
docs/docs/configuration/genai/config.md
Normal file
@ -0,0 +1,143 @@
|
||||
---
|
||||
id: genai_config
|
||||
title: Configuring Generative AI
|
||||
---
|
||||
|
||||
## Configuration
|
||||
|
||||
A Generative AI provider can be configured in the global config, which will make the Generative AI features available for use. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
|
||||
|
||||
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
|
||||
|
||||
## Ollama
|
||||
|
||||
:::warning
|
||||
|
||||
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
|
||||
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). Note that Frigate will not automatically download the model you specify in your config, Ollama will try to download the model but it may take longer than the timeout, it is recommended to pull the model beforehand by running `ollama pull your_model` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
|
||||
|
||||
:::info
|
||||
|
||||
Each model is available in multiple parameter sizes (3b, 4b, 8b, etc.). Larger sizes are more capable of complex tasks and understanding of situations, but requires more memory and computational resources. It is recommended to try multiple models and experiment to see which performs best.
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
If you are trying to use a single model for Frigate and HomeAssistant, it will need to support vision and tools calling. https://github.com/skye-harris/ollama-modelfiles contains optimized model configs for this task.
|
||||
|
||||
:::
|
||||
|
||||
The following models are recommended:
|
||||
|
||||
| Model | Notes |
|
||||
| ----------------- | ----------------------------------------------------------- |
|
||||
| `qwen3-vl` | Strong visual and situational understanding |
|
||||
| `Intern3.5VL` | Relatively fast with good vision comprehension |
|
||||
| `gemma3` | Strong frame-to-frame understanding, slower inference times |
|
||||
| `qwen2.5-vl` | Fast but capable model with good vision comprehension |
|
||||
| `llava-phi3` | Lightweight and fast model with vision comprehension |
|
||||
|
||||
:::note
|
||||
|
||||
You should have at least 8 GB of RAM available (or VRAM if running on GPU) to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
:::
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: minicpm-v:8b
|
||||
provider_options: # other Ollama client options can be defined
|
||||
keep_alive: -1
|
||||
options:
|
||||
num_ctx: 8192 # make sure the context matches other services that are using ollama
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
|
||||
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini). At the time of writing, this includes `gemini-1.5-pro` and `gemini-1.5-flash`.
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using Gemini, you must first get an API key from [Google AI Studio](https://aistudio.google.com).
|
||||
|
||||
1. Accept the Terms of Service
|
||||
2. Click "Get API Key" from the right hand navigation
|
||||
3. Click "Create API key in new project"
|
||||
4. Copy the API key for use in your config
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-1.5-flash
|
||||
```
|
||||
|
||||
## OpenAI
|
||||
|
||||
OpenAI does not have a free tier for their API. With the release of gpt-4o, pricing has been reduced and each generation should cost fractions of a cent if you choose to go this route.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using OpenAI, you must first [create an API key](https://platform.openai.com/api-keys) and [configure billing](https://platform.openai.com/settings/organization/billing/overview).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: openai
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
model: gpt-4o
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
To use a different OpenAI-compatible API endpoint, set the `OPENAI_BASE_URL` environment variable to your provider's API URL.
|
||||
|
||||
:::
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
|
||||
### Create Resource and Get API Key
|
||||
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key and resource URL, which must include the `api-version` parameter (see the example below). The model field is not required in your configuration as the model is part of the deployment name you chose when deploying the resource.
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: azure_openai
|
||||
base_url: https://example-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
```
|
||||
77
docs/docs/configuration/genai/objects.md
Normal file
77
docs/docs/configuration/genai/objects.md
Normal file
@ -0,0 +1,77 @@
|
||||
---
|
||||
id: genai_objects
|
||||
title: Object Descriptions
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
|
||||
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle, or can optionally be sent earlier after a number of significantly changed frames, for example in use in more real-time notifications. Descriptions can also be regenerated manually via the Frigate UI. Note that if you are manually entering a description for tracked objects prior to its end, this will be overwritten by the generated response.
|
||||
|
||||
By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
Generative AI object descriptions can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt/#frigatecamera_nameobjectdescriptionsset).
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
Frigate's thumbnail search excels at identifying specific details about tracked objects – for example, using an "image caption" approach to find a "person wearing a yellow vest," "a white dog running across the lawn," or "a red car on a residential street." To enhance this further, Frigate’s default prompts are designed to ask your AI provider about the intent behind the object's actions, rather than just describing its appearance.
|
||||
|
||||
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigate’s default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you what’s happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if they’re moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situation’s context.
|
||||
|
||||
## Custom Prompts
|
||||
|
||||
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
|
||||
|
||||
```
|
||||
Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.
|
||||
```
|
||||
|
||||
:::tip
|
||||
|
||||
Prompts can use variable replacements `{label}`, `{sub_label}`, and `{camera}` to substitute information from the tracked object as part of the prompt.
|
||||
|
||||
:::
|
||||
|
||||
You are also able to define custom prompts in your configuration.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
|
||||
objects:
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overridden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
objects:
|
||||
genai:
|
||||
enabled: True
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
```
|
||||
|
||||
### Experiment with prompts
|
||||
|
||||
Many providers also have a public facing chat interface for their models. Download a couple of different thumbnails or snapshots from Frigate and try new things in the playground to get descriptions to your liking before updating the prompt in Frigate.
|
||||
|
||||
- OpenAI - [ChatGPT](https://chatgpt.com)
|
||||
- Gemini - [Google AI Studio](https://aistudio.google.com)
|
||||
- Ollama - [Open WebUI](https://docs.openwebui.com/)
|
||||
113
docs/docs/configuration/genai/review_summaries.md
Normal file
113
docs/docs/configuration/genai/review_summaries.md
Normal file
@ -0,0 +1,113 @@
|
||||
---
|
||||
id: genai_review
|
||||
title: Review Summaries
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate structured summaries of review items. These summaries will show up in Frigate's native notifications as well as in the UI. Generative AI can also be used to take a collection of summaries over a period of time and provide a report, which may be useful to get a quick report of everything that happened while out for some amount of time.
|
||||
|
||||
Requests for a summary are requested automatically to your AI provider for alert review items when the activity has ended, they can also be optionally enabled for detections as well.
|
||||
|
||||
Generative AI review summaries can also be toggled dynamically for a [camera via MQTT](/integrations/mqtt/#frigatecamera_namereviewdescriptionsset).
|
||||
|
||||
## Review Summary Usage and Best Practices
|
||||
|
||||
Review summaries provide structured JSON responses that are saved for each review item:
|
||||
|
||||
```
|
||||
- `title` (string): A concise, direct title that describes the purpose or overall action (e.g., "Person taking out trash", "Joe walking dog").
|
||||
- `scene` (string): A narrative description of what happens across the sequence from start to finish, including setting, detected objects, and their observable actions.
|
||||
- `confidence` (float): 0-1 confidence in the analysis. Higher confidence when objects/actions are clearly visible and context is unambiguous.
|
||||
- `other_concerns` (list): List of user-defined concerns that may need additional investigation.
|
||||
- `potential_threat_level` (integer): 0, 1, or 2 as defined below.
|
||||
```
|
||||
|
||||
This will show in multiple places in the UI to give additional context about each activity, and allow viewing more details when extra attention is required. Frigate's built in notifications will also automatically show the title and description when the data is available.
|
||||
|
||||
### Defining Typical Activity
|
||||
|
||||
Each installation and even camera can have different parameters for what is considered suspicious activity. Frigate allows the `activity_context_prompt` to be defined globally and at the camera level, which allows you to define more specifically what should be considered normal activity. It is important that this is not overly specific as it can sway the output of the response.
|
||||
|
||||
<details>
|
||||
<summary>Default Activity Context Prompt</summary>
|
||||
|
||||
```
|
||||
### Normal Activity Indicators (Level 0)
|
||||
- Known/verified people in any zone at any time
|
||||
- People with pets in residential areas
|
||||
- Deliveries or services during daytime/evening (6 AM - 10 PM): carrying packages to doors/porches, placing items, leaving
|
||||
- Services/maintenance workers with visible tools, uniforms, or service vehicles during daytime
|
||||
- Activity confined to public areas only (sidewalks, streets) without entering property at any time
|
||||
|
||||
### Suspicious Activity Indicators (Level 1)
|
||||
- **Testing or attempting to open doors/windows/handles on vehicles or buildings** — ALWAYS Level 1 regardless of time or duration
|
||||
- **Unidentified person in private areas (driveways, near vehicles/buildings) during late night/early morning (11 PM - 5 AM)** — ALWAYS Level 1 regardless of activity or duration
|
||||
- Taking items that don't belong to them (packages, objects from porches/driveways)
|
||||
- Climbing or jumping fences/barriers to access property
|
||||
- Attempting to conceal actions or items from view
|
||||
- Prolonged loitering: remaining in same area without visible purpose throughout most of the sequence
|
||||
|
||||
### Critical Threat Indicators (Level 2)
|
||||
- Holding break-in tools (crowbars, pry bars, bolt cutters)
|
||||
- Weapons visible (guns, knives, bats used aggressively)
|
||||
- Forced entry in progress
|
||||
- Physical aggression or violence
|
||||
- Active property damage or theft in progress
|
||||
|
||||
### Assessment Guidance
|
||||
Evaluate in this order:
|
||||
|
||||
1. **If person is verified/known** → Level 0 regardless of time or activity
|
||||
2. **If person is unidentified:**
|
||||
- Check time: If late night/early morning (11 PM - 5 AM) AND in private areas (driveways, near vehicles/buildings) → Level 1
|
||||
- Check actions: If testing doors/handles, taking items, climbing → Level 1
|
||||
- Otherwise, if daytime/evening (6 AM - 10 PM) with clear legitimate purpose (delivery, service worker) → Level 0
|
||||
3. **Escalate to Level 2 if:** Weapons, break-in tools, forced entry in progress, violence, or active property damage visible (escalates from Level 0 or 1)
|
||||
|
||||
The mere presence of an unidentified person in private areas during late night hours is inherently suspicious and warrants human review, regardless of what activity they appear to be doing or how brief the sequence is.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Image Source
|
||||
|
||||
By default, review summaries use preview images (cached preview frames) which have a lower resolution but use fewer tokens per image. For better image quality and more detailed analysis, you can configure Frigate to extract frames directly from recordings at a higher resolution:
|
||||
|
||||
```yaml
|
||||
review:
|
||||
genai:
|
||||
enabled: true
|
||||
image_source: recordings # Options: "preview" (default) or "recordings"
|
||||
```
|
||||
|
||||
When using `recordings`, frames are extracted at 480px height while maintaining the camera's original aspect ratio, providing better detail for the LLM while being mindful of context window size. This is particularly useful for scenarios where fine details matter, such as identifying license plates, reading text, or analyzing distant objects.
|
||||
|
||||
The number of frames sent to the LLM is dynamically calculated based on:
|
||||
|
||||
- Your LLM provider's context window size
|
||||
- The camera's resolution and aspect ratio (ultrawide cameras like 32:9 use more tokens per image)
|
||||
- The image source (recordings use more tokens than preview images)
|
||||
|
||||
Frame counts are automatically optimized to use ~98% of the available context window while capping at 20 frames maximum to ensure reasonable inference times. Note that using recordings will:
|
||||
|
||||
- Provide higher quality images to the LLM (480p vs 180p preview images)
|
||||
- Use more tokens per image due to higher resolution
|
||||
- Result in fewer frames being sent for ultrawide cameras due to larger image size
|
||||
- Require that recordings are enabled for the camera
|
||||
|
||||
If recordings are not available for a given time period, the system will automatically fall back to using preview frames.
|
||||
|
||||
### Additional Concerns
|
||||
|
||||
Along with the concern of suspicious activity or immediate threat, you may have concerns such as animals in your garden or a gate being left open. These concerns can be configured so that the review summaries will make note of them if the activity requires additional review. For example:
|
||||
|
||||
```yaml
|
||||
review:
|
||||
genai:
|
||||
enabled: true
|
||||
additional_concerns:
|
||||
- animals in the garden
|
||||
```
|
||||
|
||||
## Review Reports
|
||||
|
||||
Along with individual review item summaries, Generative AI provides the ability to request a report of a given time period. For example, you can get a daily report while on a vacation of any suspicious activity or other concerns that may require review.
|
||||
@ -5,11 +5,11 @@ title: Enrichments
|
||||
|
||||
# Enrichments
|
||||
|
||||
Some of Frigate's enrichments can use a discrete GPU for accelerated processing.
|
||||
Some of Frigate's enrichments can use a discrete GPU or integrated GPU for accelerated processing.
|
||||
|
||||
## Requirements
|
||||
|
||||
Object detection and enrichments (like Semantic Search, Face Recognition, and License Plate Recognition) are independent features. To use a GPU for object detection, see the [Object Detectors](/configuration/object_detectors.md) documentation. If you want to use your GPU for any supported enrichments, you must choose the appropriate Frigate Docker image for your GPU and configure the enrichment according to its specific documentation.
|
||||
Object detection and enrichments (like Semantic Search, Face Recognition, and License Plate Recognition) are independent features. To use a GPU / NPU for object detection, see the [Object Detectors](/configuration/object_detectors.md) documentation. If you want to use your GPU for any supported enrichments, you must choose the appropriate Frigate Docker image for your GPU / NPU and configure the enrichment according to its specific documentation.
|
||||
|
||||
- **AMD**
|
||||
|
||||
@ -18,11 +18,16 @@ Object detection and enrichments (like Semantic Search, Face Recognition, and Li
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used for enrichments in the default Frigate image.
|
||||
- **Note:** Intel NPUs have limited model support for enrichments. GPU is recommended for enrichments when available.
|
||||
|
||||
- **Nvidia**
|
||||
|
||||
- Nvidia GPUs will automatically be detected and used for enrichments in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used for enrichments in the `-tensorrt-jp6` Frigate image.
|
||||
|
||||
- **RockChip**
|
||||
- RockChip NPU will automatically be detected and used for semantic search v1 and face recognition in the `-rk` Frigate image.
|
||||
|
||||
Utilizing a GPU for enrichments does not require you to use the same GPU for object detection. For example, you can run the `tensorrt` Docker image for enrichments and still use other dedicated hardware like a Coral or Hailo for object detection. However, one combination that is not supported is TensorRT for object detection and OpenVINO for enrichments.
|
||||
|
||||
:::note
|
||||
|
||||
@ -427,3 +427,29 @@ cameras:
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
## Synaptics
|
||||
|
||||
Hardware accelerated video de-/encoding is supported on Synpatics SL-series SoC.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Make sure to follow the [Synaptics specific installation instructions](/frigate/installation#synaptics).
|
||||
|
||||
### Configuration
|
||||
|
||||
Add one of the following FFmpeg presets to your `config.yml` to enable hardware video processing:
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args: -c:v h264_v4l2m2m
|
||||
input_args: preset-rtsp-restream
|
||||
output_args:
|
||||
record: preset-record-generic-audio-aac
|
||||
```
|
||||
|
||||
:::warning
|
||||
|
||||
Make sure that your SoC supports hardware acceleration for your input stream and your input stream is h264 encoding. For example, if your camera streams with h264 encoding, your SoC must be able to de- and encode with it. If you are unsure whether your SoC meets the requirements, take a look at the datasheet.
|
||||
|
||||
:::
|
||||
|
||||
@ -3,18 +3,18 @@ id: license_plate_recognition
|
||||
title: License Plate Recognition (LPR)
|
||||
---
|
||||
|
||||
Frigate can recognize license plates on vehicles and automatically add the detected characters to the `recognized_license_plate` field or a known name as a `sub_label` to tracked objects of type `car` or `motorcycle`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street.
|
||||
Frigate can recognize license plates on vehicles and automatically add the detected characters to the `recognized_license_plate` field or a [known](#matching) name as a `sub_label` to tracked objects of type `car` or `motorcycle`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street.
|
||||
|
||||
LPR works best when the license plate is clearly visible to the camera. For moving vehicles, Frigate continuously refines the recognition process, keeping the most confident result. However, LPR does not run on stationary vehicles.
|
||||
LPR works best when the license plate is clearly visible to the camera. For moving vehicles, Frigate continuously refines the recognition process, keeping the most confident result. When a vehicle becomes stationary, LPR continues to run for a short time after to attempt recognition.
|
||||
|
||||
When a plate is recognized, the details are:
|
||||
|
||||
- Added as a `sub_label` (if known) or the `recognized_license_plate` field (if unknown) to a tracked object.
|
||||
- Viewable in the Review Item Details pane in Review (sub labels).
|
||||
- Added as a `sub_label` (if [known](#matching)) or the `recognized_license_plate` field (if unknown) to a tracked object.
|
||||
- Viewable in the Details pane in Review/History.
|
||||
- Viewable in the Tracked Object Details pane in Explore (sub labels and recognized license plates).
|
||||
- Filterable through the More Filters menu in Explore.
|
||||
- Published via the `frigate/events` MQTT topic as a `sub_label` (known) or `recognized_license_plate` (unknown) for the `car` or `motorcycle` tracked object.
|
||||
- Published via the `frigate/tracked_object_update` MQTT topic with `name` (if known) and `plate`.
|
||||
- Published via the `frigate/events` MQTT topic as a `sub_label` ([known](#matching)) or `recognized_license_plate` (unknown) for the `car` or `motorcycle` tracked object.
|
||||
- Published via the `frigate/tracked_object_update` MQTT topic with `name` (if [known](#matching)) and `plate`.
|
||||
|
||||
## Model Requirements
|
||||
|
||||
@ -31,6 +31,7 @@ In the default mode, Frigate's LPR needs to first detect a `car` or `motorcycle`
|
||||
## Minimum System Requirements
|
||||
|
||||
License plate recognition works by running AI models locally on your system. The YOLOv9 plate detector model and the OCR models ([PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)) are relatively lightweight and can run on your CPU or GPU, depending on your configuration. At least 4GB of RAM is required.
|
||||
|
||||
## Configuration
|
||||
|
||||
License plate recognition is disabled by default. Enable it in your config file:
|
||||
@ -66,12 +67,15 @@ Fine-tune the LPR feature using these optional parameters at the global level of
|
||||
- **`min_area`**: Defines the minimum area (in pixels) a license plate must be before recognition runs.
|
||||
- Default: `1000` pixels. Note: this is intentionally set very low as it is an _area_ measurement (length x width). For reference, 1000 pixels represents a ~32x32 pixel square in your camera image.
|
||||
- Depending on the resolution of your camera's `detect` stream, you can increase this value to ignore small or distant plates.
|
||||
- **`device`**: Device to use to run license plate recognition models.
|
||||
- **`device`**: Device to use to run license plate detection _and_ recognition models.
|
||||
- Default: `CPU`
|
||||
- This can be `CPU` or `GPU`. For users without a model that detects license plates natively, using a GPU may increase performance of the models, especially the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
||||
- **`model_size`**: The size of the model used to detect text on plates.
|
||||
- This can be `CPU`, `GPU`, or the GPU's device number. For users without a model that detects license plates natively, using a GPU may increase performance of the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation. However, for users who run a model that detects `license_plate` natively, there is little to no performance gain reported with running LPR on GPU compared to the CPU.
|
||||
- **`model_size`**: The size of the model used to identify regions of text on plates.
|
||||
- Default: `small`
|
||||
- This can be `small` or `large`. The `large` model uses an enhanced text detector and is more accurate at finding text on plates but slower than the `small` model. For most users, the small model is recommended. For users in countries with multiple lines of text on plates, the large model is recommended. Note that using the large model does not improve _text recognition_, but it may improve _text detection_.
|
||||
- This can be `small` or `large`.
|
||||
- The `small` model is fast and identifies groups of Latin and Chinese characters.
|
||||
- The `large` model identifies Latin characters only, and uses an enhanced text detector to find characters on multi-line plates. It is significantly slower than the `small` model.
|
||||
- If your country or region does not use multi-line plates, you should use the `small` model as performance is much better for single-line plates.
|
||||
|
||||
### Recognition
|
||||
|
||||
@ -101,6 +105,32 @@ Fine-tune the LPR feature using these optional parameters at the global level of
|
||||
- This setting is best adjusted at the camera level if running LPR on multiple cameras.
|
||||
- If Frigate is already recognizing plates correctly, leave this setting at the default of `0`. However, if you're experiencing frequent character issues or incomplete plates and you can already easily read the plates yourself, try increasing the value gradually, starting at 5 and adjusting as needed. You should see how different enhancement levels affect your plates. Use the `debug_save_plates` configuration option (see below).
|
||||
|
||||
### Normalization Rules
|
||||
|
||||
- **`replace_rules`**: List of regex replacement rules to normalize detected plates. These rules are applied sequentially. Each rule must have a `pattern` (which can be a string or a regex, prepended by `r`) and `replacement` (a string, which also supports [backrefs](https://docs.python.org/3/library/re.html#re.sub) like `\1`). These rules are useful for dealing with common OCR issues like noise characters, separators, or confusions (e.g., 'O'→'0').
|
||||
|
||||
These rules must be defined at the global level of your `lpr` config.
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
replace_rules:
|
||||
- pattern: r'[%#*?]' # Remove noise symbols
|
||||
replacement: ""
|
||||
- pattern: r'[= ]' # Normalize = or space to dash
|
||||
replacement: "-"
|
||||
- pattern: "O" # Swap 'O' to '0' (common OCR error)
|
||||
replacement: "0"
|
||||
- pattern: r'I' # Swap 'I' to '1'
|
||||
replacement: "1"
|
||||
- pattern: r'(\w{3})(\w{3})' # Split 6 chars into groups (e.g., ABC123 → ABC-123)
|
||||
replacement: r'\1-\2'
|
||||
```
|
||||
|
||||
- Rules fire in order: In the example above: clean noise first, then separators, then swaps, then splits.
|
||||
- Backrefs (`\1`, `\2`) allow dynamic replacements (e.g., capture groups).
|
||||
- Any changes made by the rules are printed to the LPR debug log.
|
||||
- Tip: You can test patterns with tools like regex101.com.
|
||||
|
||||
### Debugging
|
||||
|
||||
- **`debug_save_plates`**: Set to `True` to save captured text on plates for debugging. These images are stored in `/media/frigate/clips/lpr`, organized into subdirectories by `<camera>/<event_id>`, and named based on the capture timestamp.
|
||||
@ -135,6 +165,9 @@ lpr:
|
||||
recognition_threshold: 0.85
|
||||
format: "^[A-Z]{2} [A-Z][0-9]{4}$" # Only recognize plates that are two letters, followed by a space, followed by a single letter and 4 numbers
|
||||
match_distance: 1 # Allow one character variation in plate matching
|
||||
replace_rules:
|
||||
- pattern: "O"
|
||||
replacement: "0" # Replace the letter O with the number 0 in every plate
|
||||
known_plates:
|
||||
Delivery Van:
|
||||
- "RJ K5678"
|
||||
@ -145,7 +178,7 @@ lpr:
|
||||
|
||||
:::note
|
||||
|
||||
If you want to detect cars on cameras but don't want to use resources to run LPR on those cars, you should disable LPR for those specific cameras.
|
||||
If a camera is configured to detect `car` or `motorcycle` but you don't want Frigate to run LPR for that camera, disable LPR at the camera level:
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
@ -273,7 +306,7 @@ With this setup:
|
||||
- Review items will always be classified as a `detection`.
|
||||
- Snapshots will always be saved.
|
||||
- Zones and object masks are **not** used.
|
||||
- The `frigate/events` MQTT topic will **not** publish tracked object updates with the license plate bounding box and score, though `frigate/reviews` will publish if recordings are enabled. If a plate is recognized as a known plate, publishing will occur with an updated `sub_label` field. If characters are recognized, publishing will occur with an updated `recognized_license_plate` field.
|
||||
- The `frigate/events` MQTT topic will **not** publish tracked object updates with the license plate bounding box and score, though `frigate/reviews` will publish if recordings are enabled. If a plate is recognized as a [known](#matching) plate, publishing will occur with an updated `sub_label` field. If characters are recognized, publishing will occur with an updated `recognized_license_plate` field.
|
||||
- License plate snapshots are saved at the highest-scoring moment and appear in Explore.
|
||||
- Debug view will not show `license_plate` bounding boxes.
|
||||
|
||||
|
||||
@ -177,6 +177,8 @@ For devices that support two way talk, Frigate can be configured to use the feat
|
||||
|
||||
To use the Reolink Doorbell with two way talk, you should use the [recommended Reolink configuration](/configuration/camera_specific#reolink-cameras)
|
||||
|
||||
As a starting point to check compatibility for your camera, view the list of cameras supported for two-way talk on the [go2rtc repository](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#two-way-audio). For cameras in the category `ONVIF Profile T`, you can use the [ONVIF Conformant Products Database](https://www.onvif.org/conformant-products/)'s FeatureList to check for the presence of `AudioOutput`. A camera that supports `ONVIF Profile T` _usually_ supports this, but due to inconsistent support, a camera that explicitly lists this feature may still not work. If no entry for your camera exists on the database, it is recommended not to buy it or to consult with the manufacturer's support on the feature availability.
|
||||
|
||||
### Streaming options on camera group dashboards
|
||||
|
||||
Frigate provides a dialog in the Camera Group Edit pane with several options for streaming on a camera group's dashboard. These settings are _per device_ and are saved in your device's local storage.
|
||||
@ -229,7 +231,27 @@ Note that disabling a camera through the config file (`enabled: False`) removes
|
||||
|
||||
If you are using continuous streaming or you are loading more than a few high resolution streams at once on the dashboard, your browser may struggle to begin playback of your streams before the timeout. Frigate always prioritizes showing a live stream as quickly as possible, even if it is a lower quality jsmpeg stream. You can use the "Reset" link/button to try loading your high resolution stream again.
|
||||
|
||||
If you are still experiencing Frigate falling back to low bandwidth mode, you may need to adjust your camera's settings per the [recommendations above](#camera_settings_recommendations).
|
||||
Errors in stream playback (e.g., connection failures, codec issues, or buffering timeouts) that cause the fallback to low bandwidth mode (jsmpeg) are logged to the browser console for easier debugging. These errors may include:
|
||||
|
||||
- Network issues (e.g., MSE or WebRTC network connection problems).
|
||||
- Unsupported codecs or stream formats (e.g., H.265 in WebRTC, which is not supported in some browsers).
|
||||
- Buffering timeouts or low bandwidth conditions causing fallback to jsmpeg.
|
||||
- Browser compatibility problems (e.g., iOS Safari limitations with MSE).
|
||||
|
||||
To view browser console logs:
|
||||
|
||||
1. Open the Frigate Live View in your browser.
|
||||
2. Open the browser's Developer Tools (F12 or right-click > Inspect > Console tab).
|
||||
3. Reproduce the error (e.g., load a problematic stream or simulate network issues).
|
||||
4. Look for messages prefixed with the camera name.
|
||||
|
||||
These logs help identify if the issue is player-specific (MSE vs. WebRTC) or related to camera configuration (e.g., go2rtc streams, codecs). If you see frequent errors:
|
||||
|
||||
- Verify your camera's H.264/AAC settings (see [Frigate's camera settings recommendations](#camera_settings_recommendations)).
|
||||
- Check go2rtc configuration for transcoding (e.g., audio to AAC/OPUS).
|
||||
- Test with a different stream via the UI dropdown (if `live -> streams` is configured).
|
||||
- For WebRTC-specific issues, ensure port 8555 is forwarded and candidates are set (see (WebRTC Extra Configuration)(#webrtc-extra-configuration)).
|
||||
- If your cameras are streaming at a high resolution, your browser may be struggling to load all of the streams before the buffering timeout occurs. Frigate prioritizes showing a true live view as quickly as possible. If the fallback occurs often, change your live view settings to use a lower bandwidth substream.
|
||||
|
||||
3. **It doesn't seem like my cameras are streaming on the Live dashboard. Why?**
|
||||
|
||||
|
||||
@ -13,12 +13,18 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Coral EdgeTPU](#edge-tpu-detector): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
- [Hailo](#hailo-8): The Hailo8 and Hailo8L AI Acceleration module is available in m.2 format with a HAT for RPi devices, offering a wide range of compatibility with devices.
|
||||
- [MemryX](#memryx-mx3): The MX3 Acceleration module is available in m.2 format, offering broad compatibility across various platforms.
|
||||
- [DeGirum](#degirum): Service for using hardware devices in the cloud or locally. Hardware and models provided on the cloud on [their website](https://hub.degirum.com).
|
||||
|
||||
**AMD**
|
||||
|
||||
- [ROCm](#amdrocm-gpu-detector): ROCm can run on AMD Discrete GPUs to provide efficient object detection.
|
||||
- [ONNX](#onnx): ROCm will automatically be detected and used as a detector in the `-rocm` Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Apple Silicon**
|
||||
|
||||
- [Apple Silicon](#apple-silicon-detector): Apple Silicon can run on M1 and newer Apple Silicon devices.
|
||||
|
||||
**Intel**
|
||||
|
||||
- [OpenVino](#openvino-detector): OpenVino can run on Intel Arc GPUs, Intel integrated GPUs, and Intel CPUs to provide efficient object detection.
|
||||
@ -37,6 +43,10 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
|
||||
|
||||
**Synaptics**
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs.
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
@ -53,7 +63,7 @@ This does not affect using hardware for accelerating other tasks such as [semant
|
||||
|
||||
# Officially Supported Detectors
|
||||
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `onnx`, `openvino`, `rknn`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `memryx`, `onnx`, `openvino`, `rknn`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
|
||||
## Edge TPU Detector
|
||||
|
||||
@ -243,41 +253,55 @@ Hailo8 supports all models in the Hailo Model Zoo that include HailoRT post-proc
|
||||
|
||||
## OpenVINO Detector
|
||||
|
||||
The OpenVINO detector type runs an OpenVINO IR model on AMD and Intel CPUs, Intel GPUs and Intel VPU hardware. To configure an OpenVINO detector, set the `"type"` attribute to `"openvino"`.
|
||||
The OpenVINO detector type runs an OpenVINO IR model on AMD and Intel CPUs, Intel GPUs and Intel NPUs. To configure an OpenVINO detector, set the `"type"` attribute to `"openvino"`.
|
||||
|
||||
The OpenVINO device to be used is specified using the `"device"` attribute according to the naming conventions in the [Device Documentation](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html). The most common devices are `CPU` and `GPU`. Currently, there is a known issue with using `AUTO`. For backwards compatibility, Frigate will attempt to use `GPU` if `AUTO` is set in your configuration.
|
||||
The OpenVINO device to be used is specified using the `"device"` attribute according to the naming conventions in the [Device Documentation](https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html). The most common devices are `CPU`, `GPU`, or `NPU`.
|
||||
|
||||
OpenVINO is supported on 6th Gen Intel platforms (Skylake) and newer. It will also run on AMD CPUs despite having no official support for it. A supported Intel platform is required to use the `GPU` device with OpenVINO. For detailed system requirements, see [OpenVINO System Requirements](https://docs.openvino.ai/2024/about-openvino/release-notes-openvino/system-requirements.html)
|
||||
OpenVINO is supported on 6th Gen Intel platforms (Skylake) and newer. It will also run on AMD CPUs despite having no official support for it. A supported Intel platform is required to use the `GPU` or `NPU` device with OpenVINO. For detailed system requirements, see [OpenVINO System Requirements](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino/system-requirements.html)
|
||||
|
||||
:::tip
|
||||
|
||||
**NPU + GPU Systems:** If you have both NPU and GPU available (Intel Core Ultra processors), use NPU for object detection and GPU for enrichments (semantic search, face recognition, etc.) for best performance and compatibility.
|
||||
|
||||
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
ov_0:
|
||||
type: openvino
|
||||
device: GPU
|
||||
device: GPU # or NPU
|
||||
ov_1:
|
||||
type: openvino
|
||||
device: GPU
|
||||
device: GPU # or NPU
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
### Supported Models
|
||||
### OpenVINO Supported Models
|
||||
|
||||
| Model | GPU | NPU | Notes |
|
||||
| ------------------------------------- | --- | --- | ------------------------------------------------------------ |
|
||||
| [YOLOv9](#yolo-v3-v4-v7-v9) | ✅ | ✅ | Recommended for GPU & NPU |
|
||||
| [RF-DETR](#rf-detr) | ✅ | ✅ | Requires XE iGPU or Arc |
|
||||
| [YOLO-NAS](#yolo-nas) | ✅ | ✅ | |
|
||||
| [MobileNet v2](#ssdlite-mobilenet-v2) | ✅ | ✅ | Fast and lightweight model, less accurate than larger models |
|
||||
| [YOLOX](#yolox) | ✅ | ? | |
|
||||
| [D-FINE](#d-fine) | ❌ | ❌ | |
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model.
|
||||
|
||||
<details>
|
||||
<summary>MobileNet v2 Config</summary>
|
||||
|
||||
Use the model configuration shown below when using the OpenVINO detector with the default OpenVINO model:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: GPU
|
||||
device: GPU # Or NPU
|
||||
|
||||
model:
|
||||
width: 300
|
||||
@ -288,6 +312,8 @@ model:
|
||||
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### YOLOX
|
||||
|
||||
This detector also supports YOLOX. Frigate does not come with any YOLOX models preloaded, so you will need to supply your own models.
|
||||
@ -296,6 +322,9 @@ This detector also supports YOLOX. Frigate does not come with any YOLOX models p
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
|
||||
|
||||
<details>
|
||||
<summary>YOLO-NAS Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -316,6 +345,8 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
</details>
|
||||
|
||||
#### YOLO (v3, v4, v7, v9)
|
||||
|
||||
YOLOv3, YOLOv4, YOLOv7, and [YOLOv9](https://github.com/WongKinYiu/yolov9) models are supported, but not included by default.
|
||||
@ -326,6 +357,9 @@ The YOLO detector has been designed to support YOLOv3, YOLOv4, YOLOv7, and YOLOv
|
||||
|
||||
:::
|
||||
|
||||
<details>
|
||||
<summary>YOLOv Setup & Config</summary>
|
||||
|
||||
:::warning
|
||||
|
||||
If you are using a Frigate+ YOLOv9 model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
|
||||
@ -338,7 +372,7 @@ After placing the downloaded onnx model in your config folder, you can use the f
|
||||
detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: GPU
|
||||
device: GPU # or NPU
|
||||
|
||||
model:
|
||||
model_type: yolo-generic
|
||||
@ -352,6 +386,8 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
</details>
|
||||
|
||||
#### RF-DETR
|
||||
|
||||
[RF-DETR](https://github.com/roboflow/rf-detr) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-rf-detr-model) for more informatoin on downloading the RF-DETR model for use in Frigate.
|
||||
@ -362,6 +398,9 @@ Due to the size and complexity of the RF-DETR model, it is only recommended to b
|
||||
|
||||
:::
|
||||
|
||||
<details>
|
||||
<summary>RF-DETR Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your `config/model_cache` folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -379,6 +418,8 @@ model:
|
||||
path: /config/model_cache/rfdetr.onnx
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### D-FINE
|
||||
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
@ -389,6 +430,9 @@ Currently D-FINE models only run on OpenVINO in CPU mode, GPUs currently fail to
|
||||
|
||||
:::
|
||||
|
||||
<details>
|
||||
<summary>D-FINE Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your config/model_cache folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -403,7 +447,63 @@ model:
|
||||
height: 640
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/dfine_s_obj2coco.onnx
|
||||
path: /config/model_cache/dfine-s.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
</details>
|
||||
|
||||
## Apple Silicon detector
|
||||
|
||||
The NPU in Apple Silicon can't be accessed from within a container, so the [Apple Silicon detector client](https://github.com/frigate-nvr/apple-silicon-detector) must first be setup. It is recommended to use the Frigate docker image with `-standard-arm64` suffix, for example `ghcr.io/blakeblackshear/frigate:stable-standard-arm64`.
|
||||
|
||||
### Setup
|
||||
|
||||
1. Setup the [Apple Silicon detector client](https://github.com/frigate-nvr/apple-silicon-detector) and run the client
|
||||
2. Configure the detector in Frigate and startup Frigate
|
||||
|
||||
### Configuration
|
||||
|
||||
Using the detector config below will connect to the client:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
apple-silicon:
|
||||
type: zmq
|
||||
endpoint: tcp://host.docker.internal:5555
|
||||
```
|
||||
|
||||
### Apple Silicon Supported Models
|
||||
|
||||
There is no default model provided, the following formats are supported:
|
||||
|
||||
#### YOLO (v3, v4, v7, v9)
|
||||
|
||||
YOLOv3, YOLOv4, YOLOv7, and [YOLOv9](https://github.com/WongKinYiu/yolov9) models are supported, but not included by default.
|
||||
|
||||
:::tip
|
||||
|
||||
The YOLO detector has been designed to support YOLOv3, YOLOv4, YOLOv7, and YOLOv9 models, but may support other YOLO model architectures as well. See [the models section](#downloading-yolo-models) for more information on downloading YOLO models for use in Frigate.
|
||||
|
||||
:::
|
||||
|
||||
When Frigate is started with the following config it will connect to the detector client and transfer the model automatically:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
apple-silicon:
|
||||
type: zmq
|
||||
endpoint: tcp://host.docker.internal:5555
|
||||
|
||||
model:
|
||||
model_type: yolo-generic
|
||||
width: 320 # <--- should match the imgsize set during model export
|
||||
height: 320 # <--- should match the imgsize set during model export
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/yolo.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
@ -489,7 +589,18 @@ We unset the `HSA_OVERRIDE_GFX_VERSION` to prevent an existing override from mes
|
||||
$ docker exec -it frigate /bin/bash -c '(unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo |grep gfx)'
|
||||
```
|
||||
|
||||
### Supported Models
|
||||
### ROCm Supported Models
|
||||
|
||||
:::tip
|
||||
|
||||
The AMD GPU kernel is known problematic especially when converting models to mxr format. The recommended approach is:
|
||||
|
||||
1. Disable object detection in the config.
|
||||
2. Startup Frigate with the onnx detector configured, the main object detection model will be converted to mxr format and cached in the config directory.
|
||||
3. Once this is finished as indicated by the logs, enable object detection in the UI and confirm that it is working correctly.
|
||||
4. Re-enable object detection in the config.
|
||||
|
||||
:::
|
||||
|
||||
See [ONNX supported models](#supported-models) for supported models, there are some caveats:
|
||||
|
||||
@ -532,7 +643,15 @@ detectors:
|
||||
|
||||
:::
|
||||
|
||||
### Supported Models
|
||||
### ONNX Supported Models
|
||||
|
||||
| Model | Nvidia GPU | AMD GPU | Notes |
|
||||
| ----------------------------- | ---------- | ------- | --------------------------------------------------- |
|
||||
| [YOLOv9](#yolo-v3-v4-v7-v9-2) | ✅ | ✅ | Supports CUDA Graphs for optimal Nvidia performance |
|
||||
| [RF-DETR](#rf-detr) | ✅ | ❌ | Supports CUDA Graphs for optimal Nvidia performance |
|
||||
| [YOLO-NAS](#yolo-nas-1) | ⚠️ | ⚠️ | Not supported by CUDA Graphs |
|
||||
| [YOLOX](#yolox-1) | ✅ | ✅ | Supports CUDA Graphs for optimal Nvidia performance |
|
||||
| [D-FINE](#d-fine) | ⚠️ | ❌ | Not supported by CUDA Graphs |
|
||||
|
||||
There is no default model provided, the following formats are supported:
|
||||
|
||||
@ -540,6 +659,9 @@ There is no default model provided, the following formats are supported:
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
|
||||
|
||||
<details>
|
||||
<summary>YOLO-NAS Setup & Config</summary>
|
||||
|
||||
:::warning
|
||||
|
||||
If you are using a Frigate+ YOLO-NAS model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
|
||||
@ -563,6 +685,8 @@ model:
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### YOLO (v3, v4, v7, v9)
|
||||
|
||||
YOLOv3, YOLOv4, YOLOv7, and [YOLOv9](https://github.com/WongKinYiu/yolov9) models are supported, but not included by default.
|
||||
@ -573,6 +697,9 @@ The YOLO detector has been designed to support YOLOv3, YOLOv4, YOLOv7, and YOLOv
|
||||
|
||||
:::
|
||||
|
||||
<details>
|
||||
<summary>YOLOv Setup & Config</summary>
|
||||
|
||||
:::warning
|
||||
|
||||
If you are using a Frigate+ YOLOv9 model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
|
||||
@ -596,12 +723,17 @@ model:
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
#### YOLOx
|
||||
|
||||
[YOLOx](https://github.com/Megvii-BaseDetection/YOLOX) models are supported, but not included by default. See [the models section](#downloading-yolo-models) for more information on downloading the YOLOx model for use in Frigate.
|
||||
|
||||
<details>
|
||||
<summary>YOLOx Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -621,10 +753,15 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
</details>
|
||||
|
||||
#### RF-DETR
|
||||
|
||||
[RF-DETR](https://github.com/roboflow/rf-detr) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-rf-detr-model) for more information on downloading the RF-DETR model for use in Frigate.
|
||||
|
||||
<details>
|
||||
<summary>RF-DETR Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your `config/model_cache` folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -641,10 +778,15 @@ model:
|
||||
path: /config/model_cache/rfdetr.onnx
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### D-FINE
|
||||
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
|
||||
<details>
|
||||
<summary>D-FINE Setup & Config</summary>
|
||||
|
||||
After placing the downloaded onnx model in your `config/model_cache` folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
@ -662,6 +804,8 @@ model:
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
@ -717,6 +861,197 @@ To verify that the integration is working correctly, start Frigate and observe t
|
||||
|
||||
# Community Supported Detectors
|
||||
|
||||
## MemryX MX3
|
||||
|
||||
This detector is available for use with the MemryX MX3 accelerator M.2 module. Frigate supports the MX3 on compatible hardware platforms, providing efficient and high-performance object detection.
|
||||
|
||||
See the [installation docs](../frigate/installation.md#memryx-mx3) for information on configuring the MemryX hardware.
|
||||
|
||||
To configure a MemryX detector, simply set the `type` attribute to `memryx` and follow the configuration guide below.
|
||||
|
||||
### Configuration
|
||||
|
||||
To configure the MemryX detector, use the following example configuration:
|
||||
|
||||
#### Single PCIe MemryX MX3
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
```
|
||||
|
||||
#### Multiple PCIe MemryX MX3 Modules
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
|
||||
memx1:
|
||||
type: memryx
|
||||
device: PCIe:1
|
||||
|
||||
memx2:
|
||||
type: memryx
|
||||
device: PCIe:2
|
||||
```
|
||||
|
||||
### Supported Models
|
||||
|
||||
MemryX `.dfp` models are automatically downloaded at runtime, if enabled, to the container at `/memryx_models/model_folder/`.
|
||||
|
||||
#### YOLO-NAS
|
||||
|
||||
The [YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) model included in this detector is downloaded from the [Models Section](#downloading-yolo-nas-model) and compiled to DFP with [mx_nc](https://developer.memryx.com/tools/neural_compiler.html#usage).
|
||||
|
||||
**Note:** The default model for the MemryX detector is YOLO-NAS 320x320.
|
||||
|
||||
The input size for **YOLO-NAS** can be set to either **320x320** (default) or **640x640**.
|
||||
|
||||
- The default size of **320x320** is optimized for lower CPU usage and faster inference times.
|
||||
|
||||
##### Configuration
|
||||
|
||||
Below is the recommended configuration for using the **YOLO-NAS** (small) model with the MemryX detector:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
|
||||
model:
|
||||
model_type: yolonas
|
||||
width: 320 # (Can be set to 640 for higher resolution)
|
||||
height: 320 # (Can be set to 640 for higher resolution)
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
# Optional: The model is normally fetched through the runtime, so 'path' can be omitted unless you want to use a custom or local model.
|
||||
# path: /config/yolonas.zip
|
||||
# The .zip file must contain:
|
||||
# ├── yolonas.dfp (a file ending with .dfp)
|
||||
# └── yolonas_post.onnx (optional; only if the model includes a cropped post-processing network)
|
||||
```
|
||||
|
||||
#### YOLOv9
|
||||
|
||||
The YOLOv9s model included in this detector is downloaded from [the original GitHub](https://github.com/WongKinYiu/yolov9) like in the [Models Section](#yolov9-1) and compiled to DFP with [mx_nc](https://developer.memryx.com/tools/neural_compiler.html#usage).
|
||||
|
||||
##### Configuration
|
||||
|
||||
Below is the recommended configuration for using the **YOLOv9** (small) model with the MemryX detector:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
|
||||
model:
|
||||
model_type: yolo-generic
|
||||
width: 320 # (Can be set to 640 for higher resolution)
|
||||
height: 320 # (Can be set to 640 for higher resolution)
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
# Optional: The model is normally fetched through the runtime, so 'path' can be omitted unless you want to use a custom or local model.
|
||||
# path: /config/yolov9.zip
|
||||
# The .zip file must contain:
|
||||
# ├── yolov9.dfp (a file ending with .dfp)
|
||||
# └── yolov9_post.onnx (optional; only if the model includes a cropped post-processing network)
|
||||
```
|
||||
|
||||
#### YOLOX
|
||||
|
||||
The model is sourced from the [OpenCV Model Zoo](https://github.com/opencv/opencv_zoo) and precompiled to DFP.
|
||||
|
||||
##### Configuration
|
||||
|
||||
Below is the recommended configuration for using the **YOLOX** (small) model with the MemryX detector:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
|
||||
model:
|
||||
model_type: yolox
|
||||
width: 640
|
||||
height: 640
|
||||
input_tensor: nchw
|
||||
input_dtype: float_denorm
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
# Optional: The model is normally fetched through the runtime, so 'path' can be omitted unless you want to use a custom or local model.
|
||||
# path: /config/yolox.zip
|
||||
# The .zip file must contain:
|
||||
# ├── yolox.dfp (a file ending with .dfp)
|
||||
```
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
The model is sourced from the [OpenMMLab Model Zoo](https://mmdeploy-oss.openmmlab.com/model/mmdet-det/ssdlite-e8679f.onnx) and has been converted to DFP.
|
||||
|
||||
##### Configuration
|
||||
|
||||
Below is the recommended configuration for using the **SSDLite MobileNet v2** model with the MemryX detector:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
memx0:
|
||||
type: memryx
|
||||
device: PCIe:0
|
||||
|
||||
model:
|
||||
model_type: ssd
|
||||
width: 320
|
||||
height: 320
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
# Optional: The model is normally fetched through the runtime, so 'path' can be omitted unless you want to use a custom or local model.
|
||||
# path: /config/ssdlite_mobilenet.zip
|
||||
# The .zip file must contain:
|
||||
# ├── ssdlite_mobilenet.dfp (a file ending with .dfp)
|
||||
# └── ssdlite_mobilenet_post.onnx (optional; only if the model includes a cropped post-processing network)
|
||||
```
|
||||
|
||||
#### Using a Custom Model
|
||||
|
||||
To use your own model:
|
||||
|
||||
1. Package your compiled model into a `.zip` file.
|
||||
|
||||
2. The `.zip` must contain the compiled `.dfp` file.
|
||||
|
||||
3. Depending on the model, the compiler may also generate a cropped post-processing network. If present, it will be named with the suffix `_post.onnx`.
|
||||
|
||||
4. Bind-mount the `.zip` file into the container and specify its path using `model.path` in your config.
|
||||
|
||||
5. Update the `labelmap_path` to match your custom model's labels.
|
||||
|
||||
For detailed instructions on compiling models, refer to the [MemryX Compiler](https://developer.memryx.com/tools/neural_compiler.html#usage) docs and [Tutorials](https://developer.memryx.com/tutorials/tutorials.html).
|
||||
|
||||
```yaml
|
||||
# The detector automatically selects the default model if nothing is provided in the config.
|
||||
#
|
||||
# Optionally, you can specify a local model path as a .zip file to override the default.
|
||||
# If a local path is provided and the file exists, it will be used instead of downloading.
|
||||
#
|
||||
# Example:
|
||||
# path: /config/yolonas.zip
|
||||
#
|
||||
# The .zip file must contain:
|
||||
# ├── yolonas.dfp (a file ending with .dfp)
|
||||
# └── yolonas_post.onnx (optional; only if the model includes a cropped post-processing network)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## NVidia TensorRT Detector
|
||||
|
||||
Nvidia Jetson devices may be used for object detection using the TensorRT libraries. Due to the size of the additional libraries, this detector is only provided in images with the `-tensorrt-jp6` tag suffix, e.g. `ghcr.io/blakeblackshear/frigate:stable-tensorrt-jp6`. This detector is designed to work with Yolo models for object detection.
|
||||
@ -799,6 +1134,41 @@ model:
|
||||
height: 320 # MUST match the chosen model i.e yolov7-320 -> 320 yolov4-416 -> 416
|
||||
```
|
||||
|
||||
## Synaptics
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
- SL1680
|
||||
|
||||
This implementation uses the [Synaptics model conversion](https://synaptics-synap.github.io/doc/v/latest/docs/manual/introduction.html#offline-model-conversion), version v3.1.0.
|
||||
|
||||
This implementation is based on sdk `v1.5.0`.
|
||||
|
||||
See the [installation docs](../frigate/installation.md#synaptics) for information on configuring the SL-series NPU hardware.
|
||||
|
||||
### Configuration
|
||||
|
||||
When configuring the Synap detector, you have to specify the model: a local **path**.
|
||||
|
||||
#### SSD Mobilenet
|
||||
|
||||
A synap model is provided in the container at /mobilenet.synap and is used by this detector type by default. The model comes from [Synap-release Github](https://github.com/synaptics-astra/synap-release/tree/v1.5.0/models/dolphin/object_detection/coco/model/mobilenet224_full80).
|
||||
|
||||
Use the model configuration shown below when using the synaptics detector with the default synap model:
|
||||
|
||||
```yaml
|
||||
detectors: # required
|
||||
synap_npu: # required
|
||||
type: synaptics # required
|
||||
|
||||
model: # required
|
||||
path: /synaptics/mobilenet.synap # required
|
||||
width: 224 # required
|
||||
height: 224 # required
|
||||
tensor_format: nhwc # default value (optional. If you change the model, it is required)
|
||||
labelmap_path: /labelmap/coco-80.txt # required
|
||||
```
|
||||
|
||||
## Rockchip platform
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
@ -842,7 +1212,7 @@ $ cat /sys/kernel/debug/rknpu/load
|
||||
|
||||
:::
|
||||
|
||||
### Supported Models
|
||||
### RockChip Supported Models
|
||||
|
||||
This `config.yml` shows all relevant options to configure the detector and explains them. All values shown are the default values (except for two). Lines that are required at least to use the detector are labeled as required, all other lines are optional.
|
||||
|
||||
@ -968,6 +1338,105 @@ Explanation of the paramters:
|
||||
- **example**: Specifying `output_name = "frigate-{quant}-{input_basename}-{soc}-v{tk_version}"` could result in a model called `frigate-i8-my_model-rk3588-v2.3.0.rknn`.
|
||||
- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.2/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.2_EN.pdf).
|
||||
|
||||
## DeGirum
|
||||
|
||||
DeGirum is a detector that can use any type of hardware listed on [their website](https://hub.degirum.com). DeGirum can be used with local hardware through a DeGirum AI Server, or through the use of `@local`. You can also connect directly to DeGirum's AI Hub to run inferences. **Please Note:** This detector _cannot_ be used for commercial purposes.
|
||||
|
||||
### Configuration
|
||||
|
||||
#### AI Server Inference
|
||||
|
||||
Before starting with the config file for this section, you must first launch an AI server. DeGirum has an AI server ready to use as a docker container. Add this to your `docker-compose.yml` to get started:
|
||||
|
||||
```yaml
|
||||
degirum_detector:
|
||||
container_name: degirum
|
||||
image: degirum/aiserver:latest
|
||||
privileged: true
|
||||
ports:
|
||||
- "8778:8778"
|
||||
```
|
||||
|
||||
All supported hardware will automatically be found on your AI server host as long as relevant runtimes and drivers are properly installed on your machine. Refer to [DeGirum's docs site](https://docs.degirum.com/pysdk/runtimes-and-drivers) if you have any trouble.
|
||||
|
||||
Once completed, changing the `config.yml` file is simple.
|
||||
|
||||
```yaml
|
||||
degirum_detector:
|
||||
type: degirum
|
||||
location: degirum # Set to service name (degirum_detector), container_name (degirum), or a host:port (192.168.29.4:8778)
|
||||
zoo: degirum/public # DeGirum's public model zoo. Zoo name should be in format "workspace/zoo_name". degirum/public is available to everyone, so feel free to use it if you don't know where to start. If you aren't pulling a model from the AI Hub, leave this and 'token' blank.
|
||||
token: dg_example_token # For authentication with the AI Hub. Get this token through the "tokens" section on the main page of the [AI Hub](https://hub.degirum.com). This can be left blank if you're pulling a model from the public zoo and running inferences on your local hardware using @local or a local DeGirum AI Server
|
||||
```
|
||||
|
||||
Setting up a model in the `config.yml` is similar to setting up an AI server.
|
||||
You can set it to:
|
||||
|
||||
- A model listed on the [AI Hub](https://hub.degirum.com), given that the correct zoo name is listed in your detector
|
||||
- If this is what you choose to do, the correct model will be downloaded onto your machine before running.
|
||||
- A local directory acting as a zoo. See DeGirum's docs site [for more information](https://docs.degirum.com/pysdk/user-guide-pysdk/organizing-models#model-zoo-directory-structure).
|
||||
- A path to some model.json.
|
||||
|
||||
```yaml
|
||||
model:
|
||||
path: ./mobilenet_v2_ssd_coco--300x300_quant_n2x_orca1_1 # directory to model .json and file
|
||||
width: 300 # width is in the model name as the first number in the "int"x"int" section
|
||||
height: 300 # height is in the model name as the second number in the "int"x"int" section
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
#### Local Inference
|
||||
|
||||
It is also possible to eliminate the need for an AI server and run the hardware directly. The benefit of this approach is that you eliminate any bottlenecks that occur when transferring prediction results from the AI server docker container to the frigate one. However, the method of implementing local inference is different for every device and hardware combination, so it's usually more trouble than it's worth. A general guideline to achieve this would be:
|
||||
|
||||
1. Ensuring that the frigate docker container has the runtime you want to use. So for instance, running `@local` for Hailo means making sure the container you're using has the Hailo runtime installed.
|
||||
2. To double check the runtime is detected by the DeGirum detector, make sure the `degirum sys-info` command properly shows whatever runtimes you mean to install.
|
||||
3. Create a DeGirum detector in your `config.yml` file.
|
||||
|
||||
```yaml
|
||||
degirum_detector:
|
||||
type: degirum
|
||||
location: "@local" # For accessing AI Hub devices and models
|
||||
zoo: degirum/public # DeGirum's public model zoo. Zoo name should be in format "workspace/zoo_name". degirum/public is available to everyone, so feel free to use it if you don't know where to start.
|
||||
token: dg_example_token # For authentication with the AI Hub. Get this token through the "tokens" section on the main page of the [AI Hub](https://hub.degirum.com). This can be left blank if you're pulling a model from the public zoo and running inferences on your local hardware using @local or a local DeGirum AI Server
|
||||
```
|
||||
|
||||
Once `degirum_detector` is setup, you can choose a model through 'model' section in the `config.yml` file.
|
||||
|
||||
```yaml
|
||||
model:
|
||||
path: mobilenet_v2_ssd_coco--300x300_quant_n2x_orca1_1
|
||||
width: 300 # width is in the model name as the first number in the "int"x"int" section
|
||||
height: 300 # height is in the model name as the second number in the "int"x"int" section
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
#### AI Hub Cloud Inference
|
||||
|
||||
If you do not possess whatever hardware you want to run, there's also the option to run cloud inferences. Do note that your detection fps might need to be lowered as network latency does significantly slow down this method of detection. For use with Frigate, we highly recommend using a local AI server as described above. To set up cloud inferences,
|
||||
|
||||
1. Sign up at [DeGirum's AI Hub](https://hub.degirum.com).
|
||||
2. Get an access token.
|
||||
3. Create a DeGirum detector in your `config.yml` file.
|
||||
|
||||
```yaml
|
||||
degirum_detector:
|
||||
type: degirum
|
||||
location: "@cloud" # For accessing AI Hub devices and models
|
||||
zoo: degirum/public # DeGirum's public model zoo. Zoo name should be in format "workspace/zoo_name". degirum/public is available to everyone, so feel free to use it if you don't know where to start.
|
||||
token: dg_example_token # For authentication with the AI Hub. Get this token through the "tokens" section on the main page of the (AI Hub)[https://hub.degirum.com).
|
||||
```
|
||||
|
||||
Once `degirum_detector` is setup, you can choose a model through 'model' section in the `config.yml` file.
|
||||
|
||||
```yaml
|
||||
model:
|
||||
path: mobilenet_v2_ssd_coco--300x300_quant_n2x_orca1_1
|
||||
width: 300 # width is in the model name as the first number in the "int"x"int" section
|
||||
height: 300 # height is in the model name as the second number in the "int"x"int" section
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
# Models
|
||||
|
||||
Some model types are not included in Frigate by default.
|
||||
|
||||
@ -13,34 +13,34 @@ H265 recordings can be viewed in Chrome 108+, Edge and Safari only. All other br
|
||||
|
||||
### Most conservative: Ensure all video is saved
|
||||
|
||||
For users deploying Frigate in environments where it is important to have contiguous video stored even if there was no detectable motion, the following config will store all video for 3 days. After 3 days, only video containing motion and overlapping with alerts or detections will be retained until 30 days have passed.
|
||||
For users deploying Frigate in environments where it is important to have contiguous video stored even if there was no detectable motion, the following config will store all video for 3 days. After 3 days, only video containing motion will be saved for 7 days. After 7 days, only video containing motion and overlapping with alerts or detections will be retained until 30 days have passed.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
continuous:
|
||||
days: 3
|
||||
mode: all
|
||||
motion:
|
||||
days: 7
|
||||
alerts:
|
||||
retain:
|
||||
days: 30
|
||||
mode: motion
|
||||
mode: all
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
mode: motion
|
||||
mode: all
|
||||
```
|
||||
|
||||
### Reduced storage: Only saving video when motion is detected
|
||||
|
||||
In order to reduce storage requirements, you can adjust your config to only retain video where motion was detected.
|
||||
In order to reduce storage requirements, you can adjust your config to only retain video where motion / activity was detected.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
motion:
|
||||
days: 3
|
||||
mode: motion
|
||||
alerts:
|
||||
retain:
|
||||
days: 30
|
||||
@ -53,12 +53,12 @@ record:
|
||||
|
||||
### Minimum: Alerts only
|
||||
|
||||
If you only want to retain video that occurs during a tracked object, this config will discard video unless an alert is ongoing.
|
||||
If you only want to retain video that occurs during activity caused by tracked object(s), this config will discard video unless an alert is ongoing.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
continuous:
|
||||
days: 0
|
||||
alerts:
|
||||
retain:
|
||||
@ -80,15 +80,17 @@ Retention configs support decimals meaning they can be configured to retain `0.5
|
||||
|
||||
:::
|
||||
|
||||
### Continuous Recording
|
||||
### Continuous and Motion Recording
|
||||
|
||||
The number of days to retain continuous recordings can be set via the following config where X is a number, by default continuous recording is disabled.
|
||||
The number of days to retain continuous and motion recordings can be set via the following config where X is a number, by default continuous recording is disabled.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
continuous:
|
||||
days: 1 # <- number of days to keep continuous recordings
|
||||
motion:
|
||||
days: 2 # <- number of days to keep motion recordings
|
||||
```
|
||||
|
||||
Continuous recording supports different retention modes [which are described below](#what-do-the-different-retain-modes-mean)
|
||||
@ -112,38 +114,6 @@ This configuration will retain recording segments that overlap with alerts and d
|
||||
|
||||
**WARNING**: Recordings still must be enabled in the config. If a camera has recordings disabled in the config, enabling via the methods listed above will have no effect.
|
||||
|
||||
## What do the different retain modes mean?
|
||||
|
||||
Frigate saves from the stream with the `record` role in 10 second segments. These options determine which recording segments are kept for continuous recording (but can also affect tracked objects).
|
||||
|
||||
Let's say you have Frigate configured so that your doorbell camera would retain the last **2** days of continuous recording.
|
||||
|
||||
- With the `all` option all 48 hours of those two days would be kept and viewable.
|
||||
- With the `motion` option the only parts of those 48 hours would be segments that Frigate detected motion. This is the middle ground option that won't keep all 48 hours, but will likely keep all segments of interest along with the potential for some extra segments.
|
||||
- With the `active_objects` option the only segments that would be kept are those where there was a true positive object that was not considered stationary.
|
||||
|
||||
The same options are available with alerts and detections, except it will only save the recordings when it overlaps with a review item of that type.
|
||||
|
||||
A configuration example of the above retain modes where all `motion` segments are stored for 7 days and `active objects` are stored for 14 days would be as follows:
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
alerts:
|
||||
retain:
|
||||
days: 14
|
||||
mode: active_objects
|
||||
detections:
|
||||
retain:
|
||||
days: 14
|
||||
mode: active_objects
|
||||
```
|
||||
|
||||
The above configuration example can be added globally or on a per camera basis.
|
||||
|
||||
## Can I have "continuous" recordings, but only at certain times?
|
||||
|
||||
Using Frigate UI, Home Assistant, or MQTT, cameras can be automated to only record in certain situations or at certain times.
|
||||
|
||||
@ -73,6 +73,12 @@ tls:
|
||||
# Optional: Enable TLS for port 8971 (default: shown below)
|
||||
enabled: True
|
||||
|
||||
# Optional: IPv6 configuration
|
||||
networking:
|
||||
# Optional: Enable IPv6 on 5000, and 8971 if tls is configured (default: shown below)
|
||||
ipv6:
|
||||
enabled: False
|
||||
|
||||
# Optional: Proxy configuration
|
||||
proxy:
|
||||
# Optional: Mapping for headers from upstream proxies. Only used if Frigate's auth
|
||||
@ -82,7 +88,13 @@ proxy:
|
||||
# See the docs for more info.
|
||||
header_map:
|
||||
user: x-forwarded-user
|
||||
role: x-forwarded-role
|
||||
role: x-forwarded-groups
|
||||
role_map:
|
||||
admin:
|
||||
- sysadmins
|
||||
- access-level-security
|
||||
viewer:
|
||||
- camera-viewer
|
||||
# Optional: Url for logging out a user. This sets the location of the logout url in
|
||||
# the UI.
|
||||
logout_url: /api/logout
|
||||
@ -228,6 +240,8 @@ birdseye:
|
||||
scaling_factor: 2.0
|
||||
# Optional: Maximum number of cameras to show at one time, showing the most recent (default: show all cameras)
|
||||
max_cameras: 1
|
||||
# Optional: Frames-per-second to re-send the last composed Birdseye frame when idle (no motion or active updates). (default: shown below)
|
||||
idle_heartbeat_fps: 0.0
|
||||
|
||||
# Optional: ffmpeg configuration
|
||||
# More information about presets at https://docs.frigate.video/configuration/ffmpeg_presets
|
||||
@ -256,6 +270,8 @@ ffmpeg:
|
||||
retry_interval: 10
|
||||
# Optional: Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players. (default: shown below)
|
||||
apple_compatibility: false
|
||||
# Optional: Set the index of the GPU to use for hardware acceleration. (default: shown below)
|
||||
gpu: 0
|
||||
|
||||
# Optional: Detect configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@ -275,6 +291,9 @@ detect:
|
||||
max_disappeared: 25
|
||||
# Optional: Configuration for stationary object tracking
|
||||
stationary:
|
||||
# Optional: Stationary classifier that uses visual characteristics to determine if an object
|
||||
# is stationary even if the box changes enough to be considered motion (default: shown below).
|
||||
classifier: True
|
||||
# Optional: Frequency for confirming stationary objects (default: same as threshold)
|
||||
# When set to 1, object detection will run to confirm the object still exists on every frame.
|
||||
# If set to 10, object detection will run to confirm the object still exists on every 10th frame.
|
||||
@ -339,6 +358,33 @@ objects:
|
||||
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
|
||||
# Checks based on the bottom center of the bounding box of the object
|
||||
mask: 0.000,0.000,0.781,0.000,0.781,0.278,0.000,0.278
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
genai:
|
||||
# Optional: Enable AI object description generation (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Use the object snapshot instead of thumbnails for description generation (default: shown below)
|
||||
use_snapshot: False
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
# Optional: Object specific prompts to customize description results
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
# Optional: objects to generate descriptions for (default: all objects that are tracked)
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
|
||||
required_zones: []
|
||||
# Optional: What triggers to use to send frames for a tracked object to generative AI (default: shown below)
|
||||
send_triggers:
|
||||
# Once the object is no longer tracked
|
||||
tracked_object_end: True
|
||||
# Optional: After X many significant updates are received (default: shown below)
|
||||
after_significant_updates: None
|
||||
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
|
||||
debug_save_thumbnails: False
|
||||
|
||||
# Optional: Review configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@ -351,6 +397,8 @@ review:
|
||||
labels:
|
||||
- car
|
||||
- person
|
||||
# Time to cutoff alerts after no alert-causing activity has occurred (default: shown below)
|
||||
cutoff_time: 40
|
||||
# Optional: required zones for an object to be marked as an alert (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
@ -365,12 +413,36 @@ review:
|
||||
labels:
|
||||
- car
|
||||
- person
|
||||
# Time to cutoff detections after no detection-causing activity has occurred (default: shown below)
|
||||
cutoff_time: 30
|
||||
# Optional: required zones for an object to be marked as a detection (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
# should be configured at the camera level.
|
||||
required_zones:
|
||||
- driveway
|
||||
# Optional: GenAI Review Summary Configuration
|
||||
genai:
|
||||
# Optional: Enable the GenAI review summary feature (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Enable GenAI review summaries for alerts (default: shown below)
|
||||
alerts: True
|
||||
# Optional: Enable GenAI review summaries for detections (default: shown below)
|
||||
detections: False
|
||||
# Optional: Activity Context Prompt to give context to the GenAI what activity is and is not suspicious.
|
||||
# It is important to be direct and detailed. See documentation for the default prompt structure.
|
||||
activity_context_prompt: """Define what is and is not suspicious
|
||||
"""
|
||||
# Optional: Image source for GenAI (default: preview)
|
||||
# Options: "preview" (uses cached preview frames at ~180p) or "recordings" (extracts frames from recordings at 480p)
|
||||
# Using "recordings" provides better image quality but uses more tokens per image.
|
||||
# Frame count is automatically calculated based on context window size, aspect ratio, and image source (capped at 20 frames).
|
||||
image_source: preview
|
||||
# Optional: Additional concerns that the GenAI should make note of (default: None)
|
||||
additional_concerns:
|
||||
- Animals in the garden
|
||||
# Optional: Preferred response language (default: English)
|
||||
preferred_language: English
|
||||
|
||||
# Optional: Motion configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@ -440,18 +512,18 @@ record:
|
||||
expire_interval: 60
|
||||
# Optional: Two-way sync recordings database with disk on startup and once a day (default: shown below).
|
||||
sync_recordings: False
|
||||
# Optional: Retention settings for recording
|
||||
retain:
|
||||
# Optional: Continuous retention settings
|
||||
continuous:
|
||||
# Optional: Number of days to retain recordings regardless of tracked objects or motion (default: shown below)
|
||||
# NOTE: This should be set to 0 and retention should be defined in alerts and detections section below
|
||||
# if you only want to retain recordings of alerts and detections.
|
||||
days: 0
|
||||
# Optional: Motion retention settings
|
||||
motion:
|
||||
# Optional: Number of days to retain recordings regardless of tracked objects (default: shown below)
|
||||
# NOTE: This should be set to 0 and retention should be defined in alerts and detections section below
|
||||
# if you only want to retain recordings of alerts and detections.
|
||||
days: 0
|
||||
# Optional: Mode for retention. Available options are: all, motion, and active_objects
|
||||
# all - save all recording segments regardless of activity
|
||||
# motion - save all recordings segments with any detected motion
|
||||
# active_objects - save all recording segments with active/moving objects
|
||||
# NOTE: this mode only applies when the days setting above is greater than 0
|
||||
mode: all
|
||||
# Optional: Recording Export Settings
|
||||
export:
|
||||
# Optional: Timelapse Output Args (default: shown below).
|
||||
@ -476,7 +548,7 @@ record:
|
||||
# Optional: Retention settings for recordings of alerts
|
||||
retain:
|
||||
# Required: Retention days (default: shown below)
|
||||
days: 14
|
||||
days: 10
|
||||
# Optional: Mode for retention. (default: shown below)
|
||||
# all - save all recording segments for alerts regardless of activity
|
||||
# motion - save all recordings segments for alerts with any detected motion
|
||||
@ -496,7 +568,7 @@ record:
|
||||
# Optional: Retention settings for recordings of detections
|
||||
retain:
|
||||
# Required: Retention days (default: shown below)
|
||||
days: 14
|
||||
days: 10
|
||||
# Optional: Mode for retention. (default: shown below)
|
||||
# all - save all recording segments for detections regardless of activity
|
||||
# motion - save all recordings segments for detections with any detected motion
|
||||
@ -513,7 +585,7 @@ record:
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
enabled: False
|
||||
# Optional: save a clean PNG copy of the snapshot image (default: shown below)
|
||||
# Optional: save a clean copy of the snapshot image (default: shown below)
|
||||
clean_copy: True
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: False
|
||||
@ -546,6 +618,9 @@ semantic_search:
|
||||
# Optional: Set the model size used for embeddings. (default: shown below)
|
||||
# NOTE: small model runs on CPU and large model runs on GPU
|
||||
model_size: "small"
|
||||
# Optional: Target a specific device to run the model (default: shown below)
|
||||
# NOTE: See https://onnxruntime.ai/docs/execution-providers/ for more information
|
||||
device: None
|
||||
|
||||
# Optional: Configuration for face recognition capability
|
||||
# NOTE: enabled, min_area can be overridden at the camera level
|
||||
@ -564,11 +639,14 @@ face_recognition:
|
||||
# Optional: Min face recognitions for the sub label to be applied to the person object (default: shown below)
|
||||
min_faces: 1
|
||||
# Optional: Number of images of recognized faces to save for training (default: shown below)
|
||||
save_attempts: 100
|
||||
save_attempts: 200
|
||||
# Optional: Apply a blur quality filter to adjust confidence based on the blur level of the image (default: shown below)
|
||||
blur_confidence_filter: True
|
||||
# Optional: Set the model size used face recognition. (default: shown below)
|
||||
model_size: small
|
||||
# Optional: Target a specific device to run the model (default: shown below)
|
||||
# NOTE: See https://onnxruntime.ai/docs/execution-providers/ for more information
|
||||
device: None
|
||||
|
||||
# Optional: Configuration for license plate recognition capability
|
||||
# NOTE: enabled, min_area, and enhancement can be overridden at the camera level
|
||||
@ -576,6 +654,7 @@ lpr:
|
||||
# Optional: Enable license plate recognition (default: shown below)
|
||||
enabled: False
|
||||
# Optional: The device to run the models on (default: shown below)
|
||||
# NOTE: See https://onnxruntime.ai/docs/execution-providers/ for more information
|
||||
device: CPU
|
||||
# Optional: Set the model size used for text detection. (default: shown below)
|
||||
model_size: small
|
||||
@ -598,30 +677,41 @@ lpr:
|
||||
enhancement: 0
|
||||
# Optional: Save plate images to /media/frigate/clips/lpr for debugging purposes (default: shown below)
|
||||
debug_save_plates: False
|
||||
# Optional: List of regex replacement rules to normalize detected plates (default: shown below)
|
||||
replace_rules: {}
|
||||
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
# Optional: Configuration for AI / LLM provider
|
||||
# WARNING: Depending on the provider, this will send thumbnails over the internet
|
||||
# to Google or OpenAI's LLMs to generate descriptions. It can be overridden at
|
||||
# the camera level (enabled: False) to enhance privacy for indoor cameras.
|
||||
# to Google or OpenAI's LLMs to generate descriptions. GenAI features can be configured at
|
||||
# the camera level to enhance privacy for indoor cameras.
|
||||
genai:
|
||||
# Optional: Enable AI description generation (default: shown below)
|
||||
enabled: False
|
||||
# Required if enabled: Provider must be one of ollama, gemini, or openai
|
||||
# Required: Provider must be one of ollama, gemini, or openai
|
||||
provider: ollama
|
||||
# Required if provider is ollama. May also be used for an OpenAI API compatible backend with the openai provider.
|
||||
base_url: http://localhost::11434
|
||||
# Required if gemini or openai
|
||||
api_key: "{FRIGATE_GENAI_API_KEY}"
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
# Optional: Object specific prompts to customize description results
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
# Required: The model to use with the provider.
|
||||
model: gemini-1.5-flash
|
||||
# Optional additional args to pass to the GenAI Provider (default: None)
|
||||
provider_options:
|
||||
keep_alive: -1
|
||||
|
||||
# Optional: Configuration for audio transcription
|
||||
# NOTE: only the enabled option can be overridden at the camera level
|
||||
audio_transcription:
|
||||
# Optional: Enable license plate recognition (default: shown below)
|
||||
enabled: False
|
||||
# Optional: The device to run the models on (default: shown below)
|
||||
device: CPU
|
||||
# Optional: Set the model size used for transcription. (default: shown below)
|
||||
model_size: small
|
||||
# Optional: Set the language used for transcription translation. (default: shown below)
|
||||
# List of language codes: https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
|
||||
language: en
|
||||
|
||||
# Optional: Restream configuration
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.9)
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.10)
|
||||
# NOTE: The default go2rtc API port (1984) must be used,
|
||||
# changing this port for the integrated go2rtc instance is not supported.
|
||||
go2rtc:
|
||||
@ -720,6 +810,8 @@ cameras:
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Optional: A friendly name or descriptive text for the zones
|
||||
friendly_name: ""
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Presence in a zone is evaluated only based on the bottom center of the objects bounding box.
|
||||
coordinates: 0.033,0.306,0.324,0.138,0.439,0.185,0.042,0.428
|
||||
@ -827,33 +919,27 @@ cameras:
|
||||
# By default the cameras are sorted alphabetically.
|
||||
order: 0
|
||||
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
genai:
|
||||
# Optional: Enable AI description generation (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Use the object snapshot instead of thumbnails for description generation (default: shown below)
|
||||
use_snapshot: False
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
# Optional: Object specific prompts to customize description results
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
# Optional: objects to generate descriptions for (default: all objects that are tracked)
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
|
||||
required_zones: []
|
||||
# Optional: What triggers to use to send frames for a tracked object to generative AI (default: shown below)
|
||||
send_triggers:
|
||||
# Once the object is no longer tracked
|
||||
tracked_object_end: True
|
||||
# Optional: After X many significant updates are received (default: shown below)
|
||||
after_significant_updates: None
|
||||
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
|
||||
debug_save_thumbnails: False
|
||||
# Optional: Configuration for triggers to automate actions based on semantic search results.
|
||||
triggers:
|
||||
# Required: Unique identifier for the trigger (generated automatically from friendly_name if not specified).
|
||||
trigger_name:
|
||||
# Required: Enable or disable the trigger. (default: shown below)
|
||||
enabled: true
|
||||
# Optional: A friendly name or descriptive text for the trigger
|
||||
friendly_name: Unique name or descriptive text
|
||||
# Type of trigger, either `thumbnail` for image-based matching or `description` for text-based matching. (default: none)
|
||||
type: thumbnail
|
||||
# Reference data for matching, either an event ID for `thumbnail` or a text string for `description`. (default: none)
|
||||
data: 1751565549.853251-b69j73
|
||||
# Similarity threshold for triggering. (default: shown below)
|
||||
threshold: 0.8
|
||||
# List of actions to perform when the trigger fires. (default: none)
|
||||
# Available options:
|
||||
# - `notification` (send a webpush notification)
|
||||
# - `sub_label` (add trigger friendly name as a sub label to the triggering tracked object)
|
||||
# - `attribute` (add trigger's name and similarity score as a data attribute to the triggering tracked object)
|
||||
actions:
|
||||
- notification
|
||||
|
||||
# Optional
|
||||
ui:
|
||||
|
||||
@ -7,7 +7,7 @@ title: Restream
|
||||
|
||||
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.9) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#configuration) for more advanced configurations and features.
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.10) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#configuration) for more advanced configurations and features.
|
||||
|
||||
:::note
|
||||
|
||||
@ -24,6 +24,11 @@ birdseye:
|
||||
restream: True
|
||||
```
|
||||
|
||||
:::tip
|
||||
|
||||
To improve connection speed when using Birdseye via restream you can enable a small idle heartbeat by setting `birdseye.idle_heartbeat_fps` to a low value (e.g. `1–2`). This makes Frigate periodically push the last frame even when no motion is detected, reducing initial connection latency.
|
||||
|
||||
:::
|
||||
### Securing Restream With Authentication
|
||||
|
||||
The go2rtc restream can be secured with RTSP based username / password authentication. Ex:
|
||||
@ -156,7 +161,7 @@ See [this comment](https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-22
|
||||
|
||||
## Advanced Restream Configurations
|
||||
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
|
||||
NOTE: The output will need to be passed with two curly braces `{{output}}`
|
||||
|
||||
@ -164,4 +169,4 @@ NOTE: The output will need to be passed with two curly braces `{{output}}`
|
||||
go2rtc:
|
||||
streams:
|
||||
stream1: exec:ffmpeg -hide_banner -re -stream_loop -1 -i /media/BigBuckBunny.mp4 -c copy -rtsp_transport tcp -f rtsp {{output}}
|
||||
```
|
||||
```
|
||||
@ -39,7 +39,7 @@ If you are enabling Semantic Search for the first time, be advised that Frigate
|
||||
|
||||
The [V1 model from Jina](https://huggingface.co/jinaai/jina-clip-v1) has a vision model which is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
|
||||
|
||||
The V1 text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
The V1 text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the object description docs](/configuration/genai/objects.md) for more information on how to automatically generate tracked object descriptions.
|
||||
|
||||
Differently weighted versions of the Jina models are available and can be selected by setting the `model_size` config option as `small` or `large`:
|
||||
|
||||
@ -78,17 +78,21 @@ Switching between V1 and V2 requires reindexing your embeddings. The embeddings
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used.
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used. You can also target a specific device in a multi-GPU installation.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
enabled: True
|
||||
model_size: large
|
||||
# Optional, if using the 'large' model in a multi-GPU installation
|
||||
device: 0
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
|
||||
If the correct build is used for your GPU / NPU and the `large` model is configured, then the GPU will be detected and used automatically.
|
||||
Specify the `device` option to target a specific GPU in a multi-GPU system (see [onnxruntime's provider options](https://onnxruntime.ai/docs/execution-providers/)).
|
||||
If you do not specify a device, the first available GPU will be used.
|
||||
|
||||
See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
||||
|
||||
@ -102,3 +106,61 @@ See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_
|
||||
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".
|
||||
5. Semantic search on thumbnails tends to return better results when matching large subjects that take up most of the frame. Small things like "cat" tend to not work well.
|
||||
6. Experiment! Find a tracked object you want to test and start typing keywords and phrases to see what works for you.
|
||||
|
||||
## Triggers
|
||||
|
||||
Triggers utilize Semantic Search to automate actions when a tracked object matches a specified image or description. Triggers can be configured so that Frigate executes a specific actions when a tracked object's image or description matches a predefined image or text, based on a similarity threshold. Triggers are managed per camera and can be configured via the Frigate UI in the Settings page under the Triggers tab.
|
||||
|
||||
:::note
|
||||
|
||||
Semantic Search must be enabled to use Triggers.
|
||||
|
||||
:::
|
||||
|
||||
### Configuration
|
||||
|
||||
Triggers are defined within the `semantic_search` configuration for each camera in your Frigate configuration file or through the UI. Each trigger consists of a `friendly_name`, a `type` (either `thumbnail` or `description`), a `data` field (the reference image event ID or text), a `threshold` for similarity matching, and a list of `actions` to perform when the trigger fires - `notification`, `sub_label`, and `attribute`.
|
||||
|
||||
Triggers are best configured through the Frigate UI.
|
||||
|
||||
#### Managing Triggers in the UI
|
||||
|
||||
1. Navigate to the **Settings** page and select the **Triggers** tab.
|
||||
2. Choose a camera from the dropdown menu to view or manage its triggers.
|
||||
3. Click **Add Trigger** to create a new trigger or use the pencil icon to edit an existing one.
|
||||
4. In the **Create Trigger** wizard:
|
||||
- Enter a **Name** for the trigger (e.g., "Red Car Alert").
|
||||
- Enter a descriptive **Friendly Name** for the trigger (e.g., "Red car on the driveway camera").
|
||||
- Select the **Type** (`Thumbnail` or `Description`).
|
||||
- For `Thumbnail`, select an image to trigger this action when a similar thumbnail image is detected, based on the threshold.
|
||||
- For `Description`, enter text to trigger this action when a similar tracked object description is detected.
|
||||
- Set the **Threshold** for similarity matching.
|
||||
- Select **Actions** to perform when the trigger fires.
|
||||
If native webpush notifications are enabled, check the `Send Notification` box to send a notification.
|
||||
Check the `Add Sub Label` box to add the trigger's friendly name as a sub label to any triggering tracked objects.
|
||||
Check the `Add Attribute` box to add the trigger's internal ID (e.g., "red_car_alert") to a data attribute on the tracked object that can be processed via the API or MQTT.
|
||||
5. Save the trigger to update the configuration and store the embedding in the database.
|
||||
|
||||
When a trigger fires, the UI highlights the trigger with a blue dot for 3 seconds for easy identification. Additionally, the UI will show the last date/time and tracked object ID that activated your trigger. The last triggered timestamp is not saved to the database or persisted through restarts of Frigate.
|
||||
|
||||
### Usage and Best Practices
|
||||
|
||||
1. **Thumbnail Triggers**: Select a representative image (event ID) from the Explore page that closely matches the object you want to detect. For best results, choose images where the object is prominent and fills most of the frame.
|
||||
2. **Description Triggers**: Write concise, specific text descriptions (e.g., "Person in a red jacket") that align with the tracked object’s description. Avoid vague terms to improve matching accuracy.
|
||||
3. **Threshold Tuning**: Adjust the threshold to balance sensitivity and specificity. A higher threshold (e.g., 0.8) requires closer matches, reducing false positives but potentially missing similar objects. A lower threshold (e.g., 0.6) is more inclusive but may trigger more often.
|
||||
4. **Using Explore**: Use the context menu or right-click / long-press on a tracked object in the Grid View in Explore to quickly add a trigger based on the tracked object's thumbnail.
|
||||
5. **Editing triggers**: For the best experience, triggers should be edited via the UI. However, Frigate will ensure triggers edited in the config will be synced with triggers created and edited in the UI.
|
||||
|
||||
### Notes
|
||||
|
||||
- Triggers rely on the same Jina AI CLIP models (V1 or V2) used for semantic search. Ensure `semantic_search` is enabled and properly configured.
|
||||
- Reindexing embeddings (via the UI or `reindex: True`) does not affect trigger configurations but may update the embeddings used for matching.
|
||||
- For optimal performance, use a system with sufficient RAM (8GB minimum, 16GB recommended) and a GPU for `large` model configurations, as described in the Semantic Search requirements.
|
||||
|
||||
### FAQ
|
||||
|
||||
#### Why can't I create a trigger on thumbnails for some text, like "person with a blue shirt" and have it trigger when a person with a blue shirt is detected?
|
||||
|
||||
TL;DR: Text-to-image triggers aren’t supported because CLIP can confuse similar images and give inconsistent scores, making automation unreliable. The same word–image pair can give different scores and the score ranges can be too close together to set a clear cutoff.
|
||||
|
||||
Text-to-image triggers are not supported due to fundamental limitations of CLIP-based similarity search. While CLIP works well for exploratory, manual queries, it is unreliable for automated triggers based on a threshold. Issues include embedding drift (the same text–image pair can yield different cosine distances over time), lack of true semantic grounding (visually similar but incorrect matches), and unstable thresholding (distance distributions are dataset-dependent and often too tightly clustered to separate relevant from irrelevant results). Instead, it is recommended to set up a workflow with thumbnail triggers: first use text search to manually select 3–5 representative reference tracked objects, then configure thumbnail triggers based on that visual similarity. This provides robust automation without the semantic ambiguity of text to image matching.
|
||||
|
||||
@ -27,6 +27,7 @@ cameras:
|
||||
- entire_yard
|
||||
zones:
|
||||
entire_yard:
|
||||
friendly_name: Entire yard # You can use characters from any language text
|
||||
coordinates: ...
|
||||
```
|
||||
|
||||
@ -44,8 +45,10 @@ cameras:
|
||||
- edge_yard
|
||||
zones:
|
||||
edge_yard:
|
||||
friendly_name: Edge yard # You can use characters from any language text
|
||||
coordinates: ...
|
||||
inner_yard:
|
||||
friendly_name: Inner yard # You can use characters from any language text
|
||||
coordinates: ...
|
||||
```
|
||||
|
||||
@ -59,6 +62,7 @@ cameras:
|
||||
- entire_yard
|
||||
zones:
|
||||
entire_yard:
|
||||
friendly_name: Entire yard
|
||||
coordinates: ...
|
||||
```
|
||||
|
||||
@ -82,13 +86,16 @@ cameras:
|
||||
|
||||
Only car objects can trigger the `front_yard_street` zone and only person can trigger the `entire_yard`. Objects will be tracked for any `person` that enter anywhere in the yard, and for cars only if they enter the street.
|
||||
|
||||
|
||||
### Zone Loitering
|
||||
|
||||
Sometimes objects are expected to be passing through a zone, but an object loitering in an area is unexpected. Zones can be configured to have a minimum loitering time after which the object will be considered in the zone.
|
||||
|
||||
:::note
|
||||
|
||||
When using loitering zones, a review item will remain active until the object leaves. Loitering zones are only meant to be used in areas where loitering is not expected behavior.
|
||||
When using loitering zones, a review item will behave in the following way:
|
||||
- When a person is in a loitering zone, the review item will remain active until the person leaves the loitering zone, regardless of if they are stationary.
|
||||
- When any other object is in a loitering zone, the review item will remain active until the loitering time is met. Then if the object is stationary the review item will end.
|
||||
|
||||
:::
|
||||
|
||||
|
||||
@ -58,24 +58,36 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
- Runs best with tiny or small size models
|
||||
|
||||
- [Google Coral EdgeTPU](#google-coral-tpu): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
|
||||
- [Supports primarily ssdlite and mobilenet model architectures](../../configuration/object_detectors#edge-tpu-detector)
|
||||
|
||||
- [MemryX](#memryx-mx3): The MX3 M.2 accelerator module is available in m.2 format allowing for a wide range of compatibility with devices.
|
||||
- [Supports many model architectures](../../configuration/object_detectors#memryx-mx3)
|
||||
- Runs best with tiny, small, or medium-size models
|
||||
|
||||
**AMD**
|
||||
|
||||
- [ROCm](#rocm---amd-gpu): ROCm can run on AMD Discrete GPUs to provide efficient object detection
|
||||
- [Supports limited model architectures](../../configuration/object_detectors#supported-models-1)
|
||||
- [Supports limited model architectures](../../configuration/object_detectors#rocm-supported-models)
|
||||
- Runs best on discrete AMD GPUs
|
||||
|
||||
**Apple Silicon**
|
||||
|
||||
- [Apple Silicon](#apple-silicon): Apple Silicon is usable on all M1 and newer Apple Silicon devices to provide efficient and fast object detection
|
||||
- [Supports primarily ssdlite and mobilenet model architectures](../../configuration/object_detectors#apple-silicon-supported-models)
|
||||
- Runs well with any size models including large
|
||||
- Runs via ZMQ proxy which adds some latency, only recommended for local connection
|
||||
|
||||
**Intel**
|
||||
|
||||
- [OpenVino](#openvino---intel): OpenVino can run on Intel Arc GPUs, Intel integrated GPUs, and Intel CPUs to provide efficient object detection.
|
||||
- [Supports majority of model architectures](../../configuration/object_detectors#supported-models)
|
||||
- [OpenVino](#openvino---intel): OpenVino can run on Intel Arc GPUs, Intel integrated GPUs, and Intel NPUs to provide efficient object detection.
|
||||
- [Supports majority of model architectures](../../configuration/object_detectors#openvino-supported-models)
|
||||
- Runs best with tiny, small, or medium models
|
||||
|
||||
**Nvidia**
|
||||
|
||||
- [TensortRT](#tensorrt---nvidia-gpu): TensorRT can run on Nvidia GPUs and Jetson devices.
|
||||
- [Supports majority of model architectures via ONNX](../../configuration/object_detectors#supported-models-2)
|
||||
- [Supports majority of model architectures via ONNX](../../configuration/object_detectors#onnx-supported-models)
|
||||
- Runs well with any size models including large
|
||||
|
||||
**Rockchip**
|
||||
@ -85,8 +97,21 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
- Runs best with tiny or small size models
|
||||
- Runs efficiently on low power hardware
|
||||
|
||||
**Synaptics**
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs to provide efficient object detection.
|
||||
|
||||
:::
|
||||
|
||||
### Synaptics
|
||||
|
||||
- **Synaptics** Default model is **mobilenet**
|
||||
|
||||
| Name | Synaptics SL1680 Inference Time |
|
||||
| ---------------- | ------------------------------- |
|
||||
| ssd mobilenet | ~ 25 ms |
|
||||
| yolov5m | ~ 118 ms |
|
||||
|
||||
### Hailo-8
|
||||
|
||||
Frigate supports both the Hailo-8 and Hailo-8L AI Acceleration Modules on compatible hardware platforms—including the Raspberry Pi 5 with the PCIe hat from the AI kit. The Hailo detector integration in Frigate automatically identifies your hardware type and selects the appropriate default model when a custom model isn’t provided.
|
||||
@ -125,6 +150,7 @@ The OpenVINO detector type is able to run on:
|
||||
|
||||
- 6th Gen Intel Platforms and newer that have an iGPU
|
||||
- x86 hosts with an Intel Arc GPU
|
||||
- Intel NPUs
|
||||
- Most modern AMD CPUs (though this is officially not supported by Intel)
|
||||
- x86 & Arm64 hosts via CPU (generally not recommended)
|
||||
|
||||
@ -149,8 +175,9 @@ Inference speeds vary greatly depending on the CPU or GPU used, some known examp
|
||||
| Intel UHD 770 | ~ 15 ms | t-320: ~ 16 ms s-320: ~ 20 ms s-640: ~ 40 ms | 320: ~ 20 ms 640: ~ 46 ms | | |
|
||||
| Intel N100 | ~ 15 ms | s-320: 30 ms | 320: ~ 25 ms | | Can only run one detector instance |
|
||||
| Intel N150 | ~ 15 ms | t-320: 16 ms s-320: 24 ms | | | |
|
||||
| Intel Iris XE | ~ 10 ms | s-320: 12 ms s-640: 30 ms | 320: ~ 18 ms 640: ~ 50 ms | | |
|
||||
| Intel Arc A310 | ~ 5 ms | t-320: 7 ms t-640: 11 ms s-320: 8 ms s-640: 15 ms | 320: ~ 8 ms 640: ~ 14 ms | | |
|
||||
| Intel Iris XE | ~ 10 ms | t-320: 6 ms t-640: 14 ms s-320: 8 ms s-640: 16 ms | 320: ~ 10 ms 640: ~ 20 ms | 320-n: 33 ms | |
|
||||
| Intel NPU | ~ 6 ms | s-320: 11 ms | 320: ~ 14 ms 640: ~ 34 ms | 320-n: 40 ms | |
|
||||
| Intel Arc A310 | ~ 5 ms | t-320: 7 ms t-640: 11 ms s-320: 8 ms s-640: 15 ms | 320: ~ 8 ms 640: ~ 14 ms | | |
|
||||
| Intel Arc A380 | ~ 6 ms | | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | |
|
||||
| Intel Arc A750 | ~ 4 ms | | 320: ~ 8 ms | | |
|
||||
|
||||
@ -160,7 +187,7 @@ Frigate is able to utilize an Nvidia GPU which supports the 12.x series of CUDA
|
||||
|
||||
#### Minimum Hardware Support
|
||||
|
||||
12.x series of CUDA libraries are used which have minor version compatibility. The minimum driver version on the host system must be `>=545`. Also the GPU must support a Compute Capability of `5.0` or greater. This generally correlates to a Maxwell-era GPU or newer, check the NVIDIA GPU Compute Capability table linked below.
|
||||
12.x series of CUDA libraries are used which have minor version compatibility. The minimum driver version on the host system must be `>=545`. Also the GPU must support a Compute Capability of `5.0` or greater. This generally correlates to a Maxwell-era GPU or newer, check the NVIDIA GPU Compute Capability table linked below.
|
||||
|
||||
Make sure your host system has the [nvidia-container-runtime](https://docs.docker.com/config/containers/resource_constraints/#access-an-nvidia-gpu) installed to pass through the GPU to the container and the host system has a compatible driver installed for your GPU.
|
||||
|
||||
@ -175,27 +202,71 @@ There are improved capabilities in newer GPU architectures that TensorRT can ben
|
||||
[NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus)
|
||||
|
||||
Inference speeds will vary greatly depending on the GPU and the model used.
|
||||
`tiny` variants are faster than the equivalent non-tiny model, some known examples are below:
|
||||
`tiny (t)` variants are faster than the equivalent non-tiny model, some known examples are below:
|
||||
|
||||
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
|
||||
| --------------- | ------------------------- | ------------------------- | ---------------------- |
|
||||
| GTX 1070 | s-320: 16 ms | 320: 14 ms | |
|
||||
| RTX 3050 | t-320: 15 ms s-320: 17 ms | 320: ~ 10 ms 640: ~ 16 ms | Nano-320: ~ 12 ms |
|
||||
| RTX 3070 | t-320: 11 ms s-320: 13 ms | 320: ~ 8 ms 640: ~ 14 ms | Nano-320: ~ 9 ms |
|
||||
| RTX A4000 | | 320: ~ 15 ms | |
|
||||
| Tesla P40 | | 320: ~ 105 ms | |
|
||||
✅ - Accelerated with CUDA Graphs
|
||||
❌ - Not accelerated with CUDA Graphs
|
||||
|
||||
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time |
|
||||
| --------- | ------------------------------------- | ------------------------- | -------------------------- |
|
||||
| GTX 1070 | s-320: 16 ms | | 320: 14 ms |
|
||||
| RTX 3050 | t-320: 8 ms s-320: 10 ms s-640: 28 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||
| RTX 3070 | t-320: 6 ms s-320: 8 ms s-640: 25 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||
| RTX A4000 | | | 320: ~ 15 ms |
|
||||
| Tesla P40 | | | 320: ~ 105 ms |
|
||||
|
||||
### Apple Silicon
|
||||
|
||||
With the [Apple Silicon](../configuration/object_detectors.md#apple-silicon-detector) detector Frigate can take advantage of the NPU in M1 and newer Apple Silicon.
|
||||
|
||||
:::warning
|
||||
|
||||
Apple Silicon can not run within a container, so a ZMQ proxy is utilized to communicate with [the Apple Silicon Frigate detector](https://github.com/frigate-nvr/apple-silicon-detector) which runs on the host. This should add minimal latency when run on the same device.
|
||||
|
||||
:::
|
||||
|
||||
| Name | YOLOv9 Inference Time |
|
||||
| ------ | ------------------------------------ |
|
||||
| M4 | s-320: 10 ms |
|
||||
| M3 Pro | t-320: 6 ms s-320: 8 ms s-640: 20 ms |
|
||||
| M1 | s-320: 9ms |
|
||||
|
||||
### ROCm - AMD GPU
|
||||
|
||||
With the [rocm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs.
|
||||
With the [ROCm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs.
|
||||
|
||||
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
|
||||
| --------- | --------------------- | ------------------------- |
|
||||
| AMD 780M | 320: ~ 14 ms | 320: ~ 25 ms 640: ~ 50 ms |
|
||||
| AMD 8700G | | 320: ~ 20 ms 640: ~ 40 ms |
|
||||
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
|
||||
| --------- | --------------------------- | ------------------------- |
|
||||
| AMD 780M | t-320: ~ 14 ms s-320: 20 ms | 320: ~ 25 ms 640: ~ 50 ms |
|
||||
| AMD 8700G | | 320: ~ 20 ms 640: ~ 40 ms |
|
||||
|
||||
## Community Supported Detectors
|
||||
|
||||
### MemryX MX3
|
||||
|
||||
Frigate supports the MemryX MX3 M.2 AI Acceleration Module on compatible hardware platforms, including both x86 (Intel/AMD) and ARM-based SBCs such as Raspberry Pi 5.
|
||||
|
||||
A single MemryX MX3 module is capable of handling multiple camera streams using the default models, making it sufficient for most users. For larger deployments with more cameras or bigger models, multiple MX3 modules can be used. Frigate supports multi-detector configurations, allowing you to connect multiple MX3 modules to scale inference capacity.
|
||||
|
||||
Detailed information is available [in the detector docs](/configuration/object_detectors#memryx-mx3).
|
||||
|
||||
**Default Model Configuration:**
|
||||
|
||||
- Default model is **YOLO-NAS-Small**.
|
||||
|
||||
The MX3 is a pipelined architecture, where the maximum frames per second supported (and thus supported number of cameras) cannot be calculated as `1/latency` (1/"Inference Time") and is measured separately. When estimating how many camera streams you may support with your configuration, use the **MX3 Total FPS** column to approximate of the detector's limit, not the Inference Time.
|
||||
|
||||
| Model | Input Size | MX3 Inference Time | MX3 Total FPS |
|
||||
| -------------------- | ---------- | ------------------ | ------------- |
|
||||
| YOLO-NAS-Small | 320 | ~ 9 ms | ~ 378 |
|
||||
| YOLO-NAS-Small | 640 | ~ 21 ms | ~ 138 |
|
||||
| YOLOv9s | 320 | ~ 16 ms | ~ 382 |
|
||||
| YOLOv9s | 640 | ~ 41 ms | ~ 110 |
|
||||
| YOLOX-Small | 640 | ~ 16 ms | ~ 263 |
|
||||
| SSDlite MobileNet v2 | 320 | ~ 5 ms | ~ 1056 |
|
||||
|
||||
Inference speeds may vary depending on the host platform. The above data was measured on an **Intel 13700 CPU**. Platforms like Raspberry Pi, Orange Pi, and other ARM-based SBCs have different levels of processing capability, which may limit total FPS.
|
||||
|
||||
### Nvidia Jetson
|
||||
|
||||
Frigate supports all Jetson boards, from the inexpensive Jetson Nano to the powerful Jetson Orin AGX. It will [make use of the Jetson's hardware media engine](/configuration/hardware_acceleration_video#nvidia-jetson-orin-agx-orin-nx-orin-nano-xavier-agx-xavier-nx-tx2-tx1-nano) when configured with the [appropriate presets](/configuration/ffmpeg_presets#hwaccel-presets), and will make use of the Jetson's GPU and DLA for object detection when configured with the [TensorRT detector](/configuration/object_detectors#nvidia-tensorrt-detector).
|
||||
|
||||
@ -229,6 +229,77 @@ If you are using `docker run`, add this option to your command `--device /dev/ha
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#hailo-8l) to complete the setup.
|
||||
|
||||
### MemryX MX3
|
||||
|
||||
The MemryX MX3 Accelerator is available in the M.2 2280 form factor (like an NVMe SSD), and supports a variety of configurations:
|
||||
- x86 (Intel/AMD) PCs
|
||||
- Raspberry Pi 5
|
||||
- Orange Pi 5 Plus/Max
|
||||
- Multi-M.2 PCIe carrier cards
|
||||
|
||||
#### Configuration
|
||||
|
||||
|
||||
#### Installation
|
||||
|
||||
To get started with MX3 hardware setup for your system, refer to the [Hardware Setup Guide](https://developer.memryx.com/get_started/hardware_setup.html).
|
||||
|
||||
Then follow these steps for installing the correct driver/runtime configuration:
|
||||
|
||||
1. Copy or download [this script](https://github.com/blakeblackshear/frigate/blob/dev/docker/memryx/user_installation.sh).
|
||||
2. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
|
||||
3. Run the script with `./user_installation.sh`
|
||||
4. **Restart your computer** to complete driver installation.
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/memx0
|
||||
```
|
||||
|
||||
During configuration, you must run Docker in privileged mode and ensure the container can access the max-manager.
|
||||
|
||||
In your `docker-compose.yml`, also add:
|
||||
|
||||
```yaml
|
||||
privileged: true
|
||||
|
||||
volumes:
|
||||
/run/mxa_manager:/run/mxa_manager
|
||||
```
|
||||
|
||||
If you can't use Docker Compose, you can run the container with something similar to this:
|
||||
|
||||
```bash
|
||||
docker run -d \
|
||||
--name frigate-memx \
|
||||
--restart=unless-stopped \
|
||||
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
|
||||
--shm-size=256m \
|
||||
-v /path/to/your/storage:/media/frigate \
|
||||
-v /path/to/your/config:/config \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-v /run/mxa_manager:/run/mxa_manager \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
--privileged=true \
|
||||
-p 8971:8971 \
|
||||
-p 8554:8554 \
|
||||
-p 5000:5000 \
|
||||
-p 8555:8555/tcp \
|
||||
-p 8555:8555/udp \
|
||||
--device /dev/memx0 \
|
||||
ghcr.io/blakeblackshear/frigate:stable
|
||||
```
|
||||
|
||||
#### Configuration
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#memryx-mx3) to complete the setup.
|
||||
|
||||
### Rockchip platform
|
||||
|
||||
Make sure that you use a linux distribution that comes with the rockchip BSP kernel 5.10 or 6.1 and necessary drivers (especially rkvdec2 and rknpu). To check, enter the following commands:
|
||||
@ -282,6 +353,37 @@ or add these options to your `docker run` command:
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#rockchip-platform) and [hardware video processing](/configuration/hardware_acceleration_video#rockchip-platform).
|
||||
|
||||
### Synaptics
|
||||
|
||||
- SL1680
|
||||
|
||||
#### Setup
|
||||
|
||||
Follow Frigate's default installation instructions, but use a docker image with `-synaptics` suffix for example `ghcr.io/blakeblackshear/frigate:stable-synaptics`.
|
||||
|
||||
Next, you need to grant docker permissions to access your hardware:
|
||||
|
||||
- During the configuration process, you should run docker in privileged mode to avoid any errors due to insufficient permissions. To do so, add `privileged: true` to your `docker-compose.yml` file or the `--privileged` flag to your docker run command.
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/synap
|
||||
- /dev/video0
|
||||
- /dev/video1
|
||||
```
|
||||
|
||||
or add these options to your `docker run` command:
|
||||
|
||||
```
|
||||
--device /dev/synap \
|
||||
--device /dev/video0 \
|
||||
--device /dev/video1
|
||||
```
|
||||
|
||||
#### Configuration
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#synaptics) and [hardware video processing](/configuration/hardware_acceleration_video#synaptics).
|
||||
|
||||
## Docker
|
||||
|
||||
Running through Docker with Docker Compose is the recommended install method.
|
||||
@ -299,7 +401,8 @@ services:
|
||||
- /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions
|
||||
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://github.com/jnicolson/gasket-builder
|
||||
- /dev/video11:/dev/video11 # For Raspberry Pi 4B
|
||||
- /dev/dri/renderD128:/dev/dri/renderD128 # For intel hwaccel, needs to be updated for your hardware
|
||||
- /dev/dri/renderD128:/dev/dri/renderD128 # AMD / Intel GPU, needs to be updated for your hardware
|
||||
- /dev/accel:/dev/accel # Intel NPU
|
||||
volumes:
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- /path/to/your/config:/config
|
||||
|
||||
@ -3,17 +3,15 @@ id: configuring_go2rtc
|
||||
title: Configuring go2rtc
|
||||
---
|
||||
|
||||
# Configuring go2rtc
|
||||
|
||||
Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect directly to your cameras. However, adding go2rtc to your configuration is required for the following features:
|
||||
|
||||
- WebRTC or MSE for live viewing with audio, higher resolutions and frame rates than the jsmpeg stream which is limited to the detect stream and does not support audio
|
||||
- Live stream support for cameras in Home Assistant Integration
|
||||
- RTSP relay for use with other consumers to reduce the number of connections to your camera streams
|
||||
|
||||
# Setup a go2rtc stream
|
||||
## Setup a go2rtc stream
|
||||
|
||||
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#module-streams), not just rtsp.
|
||||
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#module-streams), not just rtsp.
|
||||
|
||||
:::tip
|
||||
|
||||
@ -49,8 +47,8 @@ After adding this to the config, restart Frigate and try to watch the live strea
|
||||
- Check Video Codec:
|
||||
|
||||
- If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported.
|
||||
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#codecs-madness) in go2rtc documentation.
|
||||
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.9#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
|
||||
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#codecs-madness) in go2rtc documentation.
|
||||
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
@ -111,11 +109,11 @@ section.
|
||||
|
||||
:::
|
||||
|
||||
## Next steps
|
||||
### Next steps
|
||||
|
||||
1. If the stream you added to go2rtc is also used by Frigate for the `record` or `detect` role, you can migrate your config to pull from the RTSP restream to reduce the number of connections to your camera as shown [here](/configuration/restream#reduce-connections-to-camera).
|
||||
2. You can [set up WebRTC](/configuration/live#webrtc-extra-configuration) if your camera supports two-way talk. Note that WebRTC only supports specific audio formats and may require opening ports on your router.
|
||||
|
||||
## Important considerations
|
||||
## Homekit Configuration
|
||||
|
||||
If you are configuring go2rtc to publish HomeKit camera streams, on pairing the configuration is written to the `/dev/shm/go2rtc.yaml` file inside the container. These changes must be manually copied across to the `go2rtc` section of your Frigate configuration in order to persist through restarts.
|
||||
To add camera streams to Homekit Frigate must be configured in docker to use `host` networking mode. Once that is done, you can use the go2rtc WebUI (accessed via port 1984, which is disabled by default) to share export a camera to Homekit. Any changes made will automatically be saved to `/config/go2rtc_homekit.yml`.
|
||||
37
docs/docs/integrations/homekit.md
Normal file
37
docs/docs/integrations/homekit.md
Normal file
@ -0,0 +1,37 @@
|
||||
---
|
||||
id: homekit
|
||||
title: HomeKit
|
||||
---
|
||||
|
||||
Frigate cameras can be integrated with Apple HomeKit through go2rtc. This allows you to view your camera streams directly in the Apple Home app on your iOS, iPadOS, macOS, and tvOS devices.
|
||||
|
||||
## Overview
|
||||
|
||||
HomeKit integration is handled entirely through go2rtc, which is embedded in Frigate. go2rtc provides the necessary HomeKit Accessory Protocol (HAP) server to expose your cameras to HomeKit.
|
||||
|
||||
## Setup
|
||||
|
||||
All HomeKit configuration and pairing should be done through the **go2rtc WebUI**.
|
||||
|
||||
### Accessing the go2rtc WebUI
|
||||
|
||||
The go2rtc WebUI is available at:
|
||||
|
||||
```
|
||||
http://<frigate_host>:1984
|
||||
```
|
||||
|
||||
Replace `<frigate_host>` with the IP address or hostname of your Frigate server.
|
||||
|
||||
### Pairing Cameras
|
||||
|
||||
1. Navigate to the go2rtc WebUI at `http://<frigate_host>:1984`
|
||||
2. Use the `add` section to add a new camera to HomeKit
|
||||
3. Follow the on-screen instructions to generate pairing codes for your cameras
|
||||
|
||||
## Requirements
|
||||
|
||||
- Frigate must be accessible on your local network using host network_mode
|
||||
- Your iOS device must be on the same network as Frigate
|
||||
- Port 1984 must be accessible for the go2rtc WebUI
|
||||
- For detailed go2rtc configuration options, refer to the [go2rtc documentation](https://github.com/AlexxIT/go2rtc)
|
||||
@ -215,6 +215,20 @@ When the review activity has ended a final `end` message is published.
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/triggers`
|
||||
|
||||
Message published when a trigger defined in a camera's `semantic_search` configuration fires.
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "car_trigger",
|
||||
"camera": "driveway",
|
||||
"event_id": "1751565549.853251-b69j73",
|
||||
"type": "thumbnail",
|
||||
"score": 0.85
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/stats`
|
||||
|
||||
Same data available at `/api/stats` published at a configurable interval.
|
||||
@ -233,6 +247,14 @@ Topic with current state of notifications. Published values are `ON` and `OFF`.
|
||||
|
||||
## Frigate Camera Topics
|
||||
|
||||
### `frigate/<camera_name>/<role>/status`
|
||||
|
||||
Publishes the current health status of each role that is enabled (`audio`, `detect`, `record`). Possible values are:
|
||||
|
||||
- `online`: Stream is running and being processed
|
||||
- `offline`: Stream is offline and is being restarted
|
||||
- `disabled`: Camera is currently disabled
|
||||
|
||||
### `frigate/<camera_name>/<object_name>`
|
||||
|
||||
Publishes the count of objects for the camera for use as a sensor in Home Assistant.
|
||||
@ -266,6 +288,8 @@ The height and crop of snapshots can be configured in the config.
|
||||
|
||||
Publishes "ON" when a type of audio is detected and "OFF" when it is not for the camera for use as a sensor in Home Assistant.
|
||||
|
||||
`all` can be used as the audio_type for the status of all audio types.
|
||||
|
||||
### `frigate/<camera_name>/audio/dBFS`
|
||||
|
||||
Publishes the dBFS value for audio detected on this camera.
|
||||
@ -278,6 +302,12 @@ Publishes the rms value for audio detected on this camera.
|
||||
|
||||
**NOTE:** Requires audio detection to be enabled
|
||||
|
||||
### `frigate/<camera_name>/audio/transcription`
|
||||
|
||||
Publishes transcribed text for audio detected on this camera.
|
||||
|
||||
**NOTE:** Requires audio detection and transcription to be enabled
|
||||
|
||||
### `frigate/<camera_name>/enabled/set`
|
||||
|
||||
Topic to turn Frigate's processing of a camera on and off. Expected values are `ON` and `OFF`.
|
||||
@ -400,6 +430,22 @@ Topic to turn review detections for a camera on or off. Expected values are `ON`
|
||||
|
||||
Topic with current state of review detections for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/object_descriptions/set`
|
||||
|
||||
Topic to turn generative AI object descriptions for a camera on or off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/object_descriptions/state`
|
||||
|
||||
Topic with current state of generative AI object descriptions for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/review_descriptions/set`
|
||||
|
||||
Topic to turn generative AI review descriptions for a camera on or off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/review_descriptions/state`
|
||||
|
||||
Topic with current state of generative AI review descriptions for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/birdseye/set`
|
||||
|
||||
Topic to turn Birdseye for a camera on and off. Expected values are `ON` and `OFF`. Birdseye mode
|
||||
|
||||
3073
docs/package-lock.json
generated
3073
docs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@ -5,14 +5,14 @@ import frigateHttpApiSidebar from "./docs/integrations/api/sidebar";
|
||||
const sidebars: SidebarsConfig = {
|
||||
docs: {
|
||||
Frigate: [
|
||||
'frigate/index',
|
||||
'frigate/hardware',
|
||||
'frigate/planning_setup',
|
||||
'frigate/installation',
|
||||
'frigate/updating',
|
||||
'frigate/camera_setup',
|
||||
'frigate/video_pipeline',
|
||||
'frigate/glossary',
|
||||
"frigate/index",
|
||||
"frigate/hardware",
|
||||
"frigate/planning_setup",
|
||||
"frigate/installation",
|
||||
"frigate/updating",
|
||||
"frigate/camera_setup",
|
||||
"frigate/video_pipeline",
|
||||
"frigate/glossary",
|
||||
],
|
||||
Guides: [
|
||||
"guides/getting_started",
|
||||
@ -28,7 +28,7 @@ const sidebars: SidebarsConfig = {
|
||||
{
|
||||
type: "link",
|
||||
label: "Go2RTC Configuration Reference",
|
||||
href: "https://github.com/AlexxIT/go2rtc/tree/v1.9.9#configuration",
|
||||
href: "https://github.com/AlexxIT/go2rtc/tree/v1.9.10#configuration",
|
||||
} as PropSidebarItemLink,
|
||||
],
|
||||
Detectors: [
|
||||
@ -37,10 +37,36 @@ const sidebars: SidebarsConfig = {
|
||||
],
|
||||
Enrichments: [
|
||||
"configuration/semantic_search",
|
||||
"configuration/genai",
|
||||
"configuration/face_recognition",
|
||||
"configuration/license_plate_recognition",
|
||||
"configuration/bird_classification",
|
||||
{
|
||||
type: "category",
|
||||
label: "Custom Classification",
|
||||
link: {
|
||||
type: "generated-index",
|
||||
title: "Custom Classification",
|
||||
description: "Configuration for custom classification models",
|
||||
},
|
||||
items: [
|
||||
"configuration/custom_classification/state_classification",
|
||||
"configuration/custom_classification/object_classification",
|
||||
],
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Generative AI",
|
||||
link: {
|
||||
type: "generated-index",
|
||||
title: "Generative AI",
|
||||
description: "Generative AI Features",
|
||||
},
|
||||
items: [
|
||||
"configuration/genai/genai_config",
|
||||
"configuration/genai/genai_review",
|
||||
"configuration/genai/genai_objects",
|
||||
],
|
||||
},
|
||||
],
|
||||
Cameras: [
|
||||
"configuration/cameras",
|
||||
@ -90,14 +116,15 @@ const sidebars: SidebarsConfig = {
|
||||
items: frigateHttpApiSidebar,
|
||||
},
|
||||
"integrations/mqtt",
|
||||
"integrations/homekit",
|
||||
"configuration/metrics",
|
||||
"integrations/third_party_extensions",
|
||||
],
|
||||
'Frigate+': [
|
||||
'plus/index',
|
||||
'plus/annotating',
|
||||
'plus/first_model',
|
||||
'plus/faq',
|
||||
"Frigate+": [
|
||||
"plus/index",
|
||||
"plus/annotating",
|
||||
"plus/first_model",
|
||||
"plus/faq",
|
||||
],
|
||||
Troubleshooting: [
|
||||
"troubleshooting/faqs",
|
||||
|
||||
2091
docs/static/frigate-api.yaml
vendored
2091
docs/static/frigate-api.yaml
vendored
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,6 @@
|
||||
import argparse
|
||||
import faulthandler
|
||||
import multiprocessing as mp
|
||||
import signal
|
||||
import sys
|
||||
import threading
|
||||
@ -15,12 +16,17 @@ from frigate.util.config import find_config_file
|
||||
|
||||
|
||||
def main() -> None:
|
||||
manager = mp.Manager()
|
||||
faulthandler.enable()
|
||||
|
||||
# Setup the logging thread
|
||||
setup_logging()
|
||||
setup_logging(manager)
|
||||
|
||||
threading.current_thread().name = "frigate"
|
||||
stop_event = mp.Event()
|
||||
|
||||
# send stop event on SIGINT
|
||||
signal.signal(signal.SIGINT, lambda sig, frame: stop_event.set())
|
||||
|
||||
# Make sure we exit cleanly on SIGTERM.
|
||||
signal.signal(signal.SIGTERM, lambda sig, frame: sys.exit())
|
||||
@ -93,7 +99,14 @@ def main() -> None:
|
||||
print("*************************************************************")
|
||||
print("*** End Config Validation Errors ***")
|
||||
print("*************************************************************")
|
||||
sys.exit(1)
|
||||
|
||||
# attempt to start Frigate in recovery mode
|
||||
try:
|
||||
config = FrigateConfig.load(install=True, safe_load=True)
|
||||
print("Starting Frigate in safe mode.")
|
||||
except ValidationError:
|
||||
print("Unable to start Frigate in safe mode.")
|
||||
sys.exit(1)
|
||||
if args.validate_config:
|
||||
print("*************************************************************")
|
||||
print("*** Your config file is valid. ***")
|
||||
@ -101,8 +114,23 @@ def main() -> None:
|
||||
sys.exit(0)
|
||||
|
||||
# Run the main application.
|
||||
FrigateApp(config).start()
|
||||
FrigateApp(config, manager, stop_event).start()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mp.set_forkserver_preload(
|
||||
[
|
||||
# Standard library and core dependencies
|
||||
"sqlite3",
|
||||
# Third-party libraries commonly used in Frigate
|
||||
"numpy",
|
||||
"cv2",
|
||||
"peewee",
|
||||
"zmq",
|
||||
"ruamel.yaml",
|
||||
# Frigate core modules
|
||||
"frigate.camera.maintainer",
|
||||
]
|
||||
)
|
||||
mp.set_start_method("forkserver", force=True)
|
||||
main()
|
||||
|
||||
@ -6,21 +6,21 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import traceback
|
||||
import urllib
|
||||
from datetime import datetime, timedelta
|
||||
from functools import reduce
|
||||
from io import StringIO
|
||||
from pathlib import Path as FilePath
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import aiofiles
|
||||
import requests
|
||||
import ruamel.yaml
|
||||
from fastapi import APIRouter, Body, Path, Request, Response
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from fastapi.params import Depends
|
||||
from fastapi.responses import JSONResponse, PlainTextResponse, StreamingResponse
|
||||
from markupsafe import escape
|
||||
from peewee import SQL, operator
|
||||
from peewee import SQL, fn, operator
|
||||
from pydantic import ValidationError
|
||||
|
||||
from frigate.api.auth import require_role
|
||||
@ -28,21 +28,26 @@ from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryPa
|
||||
from frigate.api.defs.request.app_body import AppConfigSetBody
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.config.camera.updater import (
|
||||
CameraConfigUpdateEnum,
|
||||
CameraConfigUpdateTopic,
|
||||
)
|
||||
from frigate.models import Event, Timeline
|
||||
from frigate.stats.prometheus import get_metrics, update_metrics
|
||||
from frigate.util.builtin import (
|
||||
clean_camera_user_pass,
|
||||
get_tz_modifiers,
|
||||
update_yaml_from_url,
|
||||
flatten_config_data,
|
||||
process_config_query_string,
|
||||
update_yaml_file_bulk,
|
||||
)
|
||||
from frigate.util.config import find_config_file
|
||||
from frigate.util.services import (
|
||||
ffprobe_stream,
|
||||
get_nvidia_driver_info,
|
||||
process_logs,
|
||||
restart_frigate,
|
||||
vainfo_hwaccel,
|
||||
)
|
||||
from frigate.util.time import get_tz_modifiers
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -63,43 +68,6 @@ def config_schema(request: Request):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/go2rtc/streams")
|
||||
def go2rtc_streams():
|
||||
r = requests.get("http://127.0.0.1:1984/api/streams")
|
||||
if not r.ok:
|
||||
logger.error("Failed to fetch streams from go2rtc")
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Error fetching stream data"}),
|
||||
status_code=500,
|
||||
)
|
||||
stream_data = r.json()
|
||||
for data in stream_data.values():
|
||||
for producer in data.get("producers") or []:
|
||||
producer["url"] = clean_camera_user_pass(producer.get("url", ""))
|
||||
return JSONResponse(content=stream_data)
|
||||
|
||||
|
||||
@router.get("/go2rtc/streams/{camera_name}")
|
||||
def go2rtc_camera_stream(request: Request, camera_name: str):
|
||||
r = requests.get(
|
||||
f"http://127.0.0.1:1984/api/streams?src={camera_name}&video=all&audio=allµphone"
|
||||
)
|
||||
if not r.ok:
|
||||
camera_config = request.app.frigate_config.cameras.get(camera_name)
|
||||
|
||||
if camera_config and camera_config.enabled:
|
||||
logger.error("Failed to fetch streams from go2rtc")
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Error fetching stream data"}),
|
||||
status_code=500,
|
||||
)
|
||||
stream_data = r.json()
|
||||
for producer in stream_data.get("producers", []):
|
||||
producer["url"] = clean_camera_user_pass(producer.get("url", ""))
|
||||
return JSONResponse(content=stream_data)
|
||||
|
||||
|
||||
@router.get("/version", response_class=PlainTextResponse)
|
||||
def version():
|
||||
return VERSION
|
||||
@ -123,7 +91,14 @@ def metrics(request: Request):
|
||||
"""Expose Prometheus metrics endpoint and update metrics with latest stats"""
|
||||
# Retrieve the latest statistics and update the Prometheus metrics
|
||||
stats = request.app.stats_emitter.get_latest_stats()
|
||||
update_metrics(stats)
|
||||
# query DB for count of events by camera, label
|
||||
event_counts: List[Dict[str, Any]] = (
|
||||
Event.select(Event.camera, Event.label, fn.Count())
|
||||
.group_by(Event.camera, Event.label)
|
||||
.dicts()
|
||||
)
|
||||
|
||||
update_metrics(stats=stats, event_counts=event_counts)
|
||||
content, content_type = get_metrics()
|
||||
return Response(content=content, media_type=content_type)
|
||||
|
||||
@ -354,14 +329,37 @@ def config_set(request: Request, body: AppConfigSetBody):
|
||||
|
||||
with open(config_file, "r") as f:
|
||||
old_raw_config = f.read()
|
||||
f.close()
|
||||
|
||||
try:
|
||||
update_yaml_from_url(config_file, str(request.url))
|
||||
updates = {}
|
||||
|
||||
# process query string parameters (takes precedence over body.config_data)
|
||||
parsed_url = urllib.parse.urlparse(str(request.url))
|
||||
query_string = urllib.parse.parse_qs(parsed_url.query, keep_blank_values=True)
|
||||
|
||||
# Filter out empty keys but keep blank values for non-empty keys
|
||||
query_string = {k: v for k, v in query_string.items() if k}
|
||||
|
||||
if query_string:
|
||||
updates = process_config_query_string(query_string)
|
||||
elif body.config_data:
|
||||
updates = flatten_config_data(body.config_data)
|
||||
|
||||
if not updates:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": "No configuration data provided"}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
# apply all updates in a single operation
|
||||
update_yaml_file_bulk(config_file, updates)
|
||||
|
||||
# validate the updated config
|
||||
with open(config_file, "r") as f:
|
||||
new_raw_config = f.read()
|
||||
f.close()
|
||||
# Validate the config schema
|
||||
|
||||
try:
|
||||
config = FrigateConfig.parse(new_raw_config)
|
||||
except Exception:
|
||||
@ -385,8 +383,34 @@ def config_set(request: Request, body: AppConfigSetBody):
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
if body.requires_restart == 0:
|
||||
if body.requires_restart == 0 or body.update_topic:
|
||||
old_config: FrigateConfig = request.app.frigate_config
|
||||
request.app.frigate_config = config
|
||||
|
||||
if body.update_topic:
|
||||
if body.update_topic.startswith("config/cameras/"):
|
||||
_, _, camera, field = body.update_topic.split("/")
|
||||
|
||||
if field == "add":
|
||||
settings = config.cameras[camera]
|
||||
elif field == "remove":
|
||||
settings = old_config.cameras[camera]
|
||||
else:
|
||||
settings = config.get_nested_object(body.update_topic)
|
||||
|
||||
request.app.config_publisher.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum[field], camera),
|
||||
settings,
|
||||
)
|
||||
else:
|
||||
# Generic handling for global config updates
|
||||
settings = config.get_nested_object(body.update_topic)
|
||||
|
||||
# Publish None for removal, actual config for add/update
|
||||
request.app.config_publisher.publisher.publish(
|
||||
body.update_topic, settings
|
||||
)
|
||||
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
@ -398,66 +422,6 @@ def config_set(request: Request, body: AppConfigSetBody):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/ffprobe")
|
||||
def ffprobe(request: Request, paths: str = ""):
|
||||
path_param = paths
|
||||
|
||||
if not path_param:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Path needs to be provided."}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if path_param.startswith("camera"):
|
||||
camera = path_param[7:]
|
||||
|
||||
if camera not in request.app.frigate_config.cameras.keys():
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": f"{camera} is not a valid camera."}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if not request.app.frigate_config.cameras[camera].enabled:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": f"{camera} is not enabled."}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
paths = map(
|
||||
lambda input: input.path,
|
||||
request.app.frigate_config.cameras[camera].ffmpeg.inputs,
|
||||
)
|
||||
elif "," in clean_camera_user_pass(path_param):
|
||||
paths = path_param.split(",")
|
||||
else:
|
||||
paths = [path_param]
|
||||
|
||||
# user has multiple streams
|
||||
output = []
|
||||
|
||||
for path in paths:
|
||||
ffprobe = ffprobe_stream(request.app.frigate_config.ffmpeg, path.strip())
|
||||
output.append(
|
||||
{
|
||||
"return_code": ffprobe.returncode,
|
||||
"stderr": (
|
||||
ffprobe.stderr.decode("unicode_escape").strip()
|
||||
if ffprobe.returncode != 0
|
||||
else ""
|
||||
),
|
||||
"stdout": (
|
||||
json.loads(ffprobe.stdout.decode("unicode_escape").strip())
|
||||
if ffprobe.returncode == 0
|
||||
else ""
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
return JSONResponse(content=output)
|
||||
|
||||
|
||||
@router.get("/vainfo")
|
||||
def vainfo():
|
||||
vainfo = vainfo_hwaccel()
|
||||
@ -733,7 +697,11 @@ def timeline(camera: str = "all", limit: int = 100, source_id: Optional[str] = N
|
||||
clauses.append((Timeline.camera == camera))
|
||||
|
||||
if source_id:
|
||||
clauses.append((Timeline.source_id == source_id))
|
||||
source_ids = [sid.strip() for sid in source_id.split(",")]
|
||||
if len(source_ids) == 1:
|
||||
clauses.append((Timeline.source_id == source_ids[0]))
|
||||
else:
|
||||
clauses.append((Timeline.source_id.in_(source_ids)))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((True))
|
||||
|
||||
@ -11,7 +11,7 @@ import secrets
|
||||
import time
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import List, Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request, Response
|
||||
from fastapi.responses import JSONResponse, RedirectResponse
|
||||
@ -33,7 +33,23 @@ from frigate.models import User
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(tags=[Tags.auth])
|
||||
VALID_ROLES = ["admin", "viewer"]
|
||||
|
||||
|
||||
@router.get("/auth/first_time_login")
|
||||
def first_time_login(request: Request):
|
||||
"""Return whether the admin first-time login help flag is set in config.
|
||||
|
||||
This endpoint is intentionally unauthenticated so the login page can
|
||||
query it before a user is authenticated.
|
||||
"""
|
||||
auth_config = request.app.frigate_config.auth
|
||||
|
||||
return JSONResponse(
|
||||
content={
|
||||
"admin_first_time_login": auth_config.admin_first_time_login
|
||||
or auth_config.reset_admin_password
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class RateLimiter:
|
||||
@ -204,6 +220,7 @@ async def get_current_user(request: Request):
|
||||
def require_role(required_roles: List[str]):
|
||||
async def role_checker(request: Request):
|
||||
proxy_config: ProxyConfig = request.app.frigate_config.proxy
|
||||
config_roles = list(request.app.frigate_config.auth.roles.keys())
|
||||
|
||||
# Get role from header (could be comma-separated)
|
||||
role_header = request.headers.get("remote-role")
|
||||
@ -217,19 +234,123 @@ def require_role(required_roles: List[str]):
|
||||
if not roles:
|
||||
raise HTTPException(status_code=403, detail="Role not provided")
|
||||
|
||||
# Check if any role matches required_roles
|
||||
if not any(role in required_roles for role in roles):
|
||||
# enforce config roles
|
||||
valid_roles = [r for r in roles if r in config_roles]
|
||||
if not valid_roles:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail=f"Role {', '.join(roles)} not authorized. Required: {', '.join(required_roles)}",
|
||||
detail=f"No valid roles found in {roles}. Required: {', '.join(required_roles)}. Available: {', '.join(config_roles)}",
|
||||
)
|
||||
|
||||
# Return the first matching role
|
||||
return next((role for role in roles if role in required_roles), roles[0])
|
||||
if not any(role in required_roles for role in valid_roles):
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail=f"Role {', '.join(valid_roles)} not authorized. Required: {', '.join(required_roles)}",
|
||||
)
|
||||
|
||||
return next(
|
||||
(role for role in valid_roles if role in required_roles), valid_roles[0]
|
||||
)
|
||||
|
||||
return role_checker
|
||||
|
||||
|
||||
def resolve_role(
|
||||
headers: dict, proxy_config: ProxyConfig, config_roles: set[str]
|
||||
) -> str:
|
||||
"""
|
||||
Determine the effective role for a request based on proxy headers and configuration.
|
||||
|
||||
Order of resolution:
|
||||
1. If a role header is defined in proxy_config.header_map.role:
|
||||
- If a role_map is configured, treat the header as group claims
|
||||
(split by proxy_config.separator) and map to roles.
|
||||
- If no role_map is configured, treat the header as role names directly.
|
||||
2. If no valid role is found, return proxy_config.default_role if it's valid in config_roles, else 'viewer'.
|
||||
|
||||
Args:
|
||||
headers (dict): Incoming request headers (case-insensitive).
|
||||
proxy_config (ProxyConfig): Proxy configuration.
|
||||
config_roles (set[str]): Set of valid roles from config.
|
||||
|
||||
Returns:
|
||||
str: Resolved role (one of config_roles or validated default).
|
||||
"""
|
||||
default_role = proxy_config.default_role
|
||||
role_header = proxy_config.header_map.role
|
||||
|
||||
# Validate default_role against config; fallback to 'viewer' if invalid
|
||||
validated_default = default_role if default_role in config_roles else "viewer"
|
||||
if not config_roles:
|
||||
validated_default = "viewer" # Edge case: no roles defined
|
||||
|
||||
if not role_header:
|
||||
logger.debug(
|
||||
"No role header configured in proxy_config.header_map. Returning validated default role '%s'.",
|
||||
validated_default,
|
||||
)
|
||||
return validated_default
|
||||
|
||||
raw_value = headers.get(role_header, "")
|
||||
logger.debug("Raw role header value from '%s': %r", role_header, raw_value)
|
||||
|
||||
if not raw_value:
|
||||
logger.debug(
|
||||
"Role header missing or empty. Returning validated default role '%s'.",
|
||||
validated_default,
|
||||
)
|
||||
return validated_default
|
||||
|
||||
# role_map configured, treat header as group claims
|
||||
if proxy_config.header_map.role_map:
|
||||
groups = [
|
||||
g.strip() for g in raw_value.split(proxy_config.separator) if g.strip()
|
||||
]
|
||||
logger.debug("Parsed groups from role header: %s", groups)
|
||||
|
||||
matched_roles = {
|
||||
role_name
|
||||
for role_name, required_groups in proxy_config.header_map.role_map.items()
|
||||
if any(group in groups for group in required_groups)
|
||||
}
|
||||
logger.debug("Matched roles from role_map: %s", matched_roles)
|
||||
|
||||
if matched_roles:
|
||||
resolved = next(
|
||||
(r for r in config_roles if r in matched_roles), validated_default
|
||||
)
|
||||
logger.debug("Resolved role (with role_map) to '%s'.", resolved)
|
||||
return resolved
|
||||
|
||||
logger.debug(
|
||||
"No role_map match for groups '%s'. Using validated default role '%s'.",
|
||||
raw_value,
|
||||
validated_default,
|
||||
)
|
||||
return validated_default
|
||||
|
||||
# no role_map, treat as role names directly
|
||||
roles_from_header = [
|
||||
r.strip().lower() for r in raw_value.split(proxy_config.separator) if r.strip()
|
||||
]
|
||||
logger.debug("Parsed roles directly from header: %s", roles_from_header)
|
||||
|
||||
resolved = next(
|
||||
(r for r in config_roles if r in roles_from_header),
|
||||
validated_default,
|
||||
)
|
||||
if resolved == validated_default and roles_from_header:
|
||||
logger.debug(
|
||||
"Provided proxy role header values '%s' did not contain a valid role. Using validated default role '%s'.",
|
||||
raw_value,
|
||||
validated_default,
|
||||
)
|
||||
else:
|
||||
logger.debug("Resolved role (direct header) to '%s'.", resolved)
|
||||
|
||||
return resolved
|
||||
|
||||
|
||||
# Endpoints
|
||||
@router.get("/auth")
|
||||
def auth(request: Request):
|
||||
@ -266,22 +387,11 @@ def auth(request: Request):
|
||||
else "anonymous"
|
||||
)
|
||||
|
||||
role_header = proxy_config.header_map.role
|
||||
role = (
|
||||
request.headers.get(role_header, default=proxy_config.default_role)
|
||||
if role_header
|
||||
else proxy_config.default_role
|
||||
)
|
||||
|
||||
# if comma-separated with "admin", use "admin",
|
||||
# if comma-separated with "viewer", use "viewer",
|
||||
# else use default role
|
||||
|
||||
roles = [r.strip() for r in role.split(proxy_config.separator)] if role else []
|
||||
success_response.headers["remote-role"] = next(
|
||||
(r for r in VALID_ROLES if r in roles), proxy_config.default_role
|
||||
)
|
||||
# parse header and resolve a valid role
|
||||
config_roles_set = set(auth_config.roles.keys())
|
||||
role = resolve_role(request.headers, proxy_config, config_roles_set)
|
||||
|
||||
success_response.headers["remote-role"] = role
|
||||
return success_response
|
||||
|
||||
# now apply authentication
|
||||
@ -373,7 +483,13 @@ def profile(request: Request):
|
||||
username = request.headers.get("remote-user", "anonymous")
|
||||
role = request.headers.get("remote-role", "viewer")
|
||||
|
||||
return JSONResponse(content={"username": username, "role": role})
|
||||
all_camera_names = set(request.app.frigate_config.cameras.keys())
|
||||
roles_dict = request.app.frigate_config.auth.roles
|
||||
allowed_cameras = User.get_allowed_cameras(role, roles_dict, all_camera_names)
|
||||
|
||||
return JSONResponse(
|
||||
content={"username": username, "role": role, "allowed_cameras": allowed_cameras}
|
||||
)
|
||||
|
||||
|
||||
@router.get("/logout")
|
||||
@ -404,14 +520,23 @@ def login(request: Request, body: AppPostLoginBody):
|
||||
password_hash = db_user.password_hash
|
||||
if verify_password(password, password_hash):
|
||||
role = getattr(db_user, "role", "viewer")
|
||||
if role not in VALID_ROLES:
|
||||
role = "viewer" # Enforce valid roles
|
||||
config_roles_set = set(request.app.frigate_config.auth.roles.keys())
|
||||
if role not in config_roles_set:
|
||||
logger.warning(
|
||||
f"User {db_user.username} has an invalid role {role}, falling back to 'viewer'."
|
||||
)
|
||||
role = "viewer"
|
||||
expiration = int(time.time()) + JWT_SESSION_LENGTH
|
||||
encoded_jwt = create_encoded_jwt(user, role, expiration, request.app.jwt_token)
|
||||
response = Response("", 200)
|
||||
set_jwt_cookie(
|
||||
response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE
|
||||
)
|
||||
# Clear admin_first_time_login flag after successful admin login so the
|
||||
# UI stops showing the first-time login documentation link.
|
||||
if role == "admin":
|
||||
request.app.frigate_config.auth.admin_first_time_login = False
|
||||
|
||||
return response
|
||||
return JSONResponse(content={"message": "Login failed"}, status_code=401)
|
||||
|
||||
@ -430,11 +555,17 @@ def create_user(
|
||||
body: AppPostUsersBody,
|
||||
):
|
||||
HASH_ITERATIONS = request.app.frigate_config.auth.hash_iterations
|
||||
config_roles = list(request.app.frigate_config.auth.roles.keys())
|
||||
|
||||
if not re.match("^[A-Za-z0-9._]+$", body.username):
|
||||
return JSONResponse(content={"message": "Invalid username"}, status_code=400)
|
||||
|
||||
role = body.role if body.role in VALID_ROLES else "viewer"
|
||||
if body.role not in config_roles:
|
||||
return JSONResponse(
|
||||
content={"message": f"Role must be one of: {', '.join(config_roles)}"},
|
||||
status_code=400,
|
||||
)
|
||||
role = body.role or "viewer"
|
||||
password_hash = hash_password(body.password, iterations=HASH_ITERATIONS)
|
||||
User.insert(
|
||||
{
|
||||
@ -505,10 +636,52 @@ async def update_role(
|
||||
return JSONResponse(
|
||||
content={"message": "Cannot modify admin user's role"}, status_code=403
|
||||
)
|
||||
if body.role not in VALID_ROLES:
|
||||
config_roles = list(request.app.frigate_config.auth.roles.keys())
|
||||
if body.role not in config_roles:
|
||||
return JSONResponse(
|
||||
content={"message": "Role must be 'admin' or 'viewer'"}, status_code=400
|
||||
content={"message": f"Role must be one of: {', '.join(config_roles)}"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
User.set_by_id(username, {User.role: body.role})
|
||||
return JSONResponse(content={"success": True})
|
||||
|
||||
|
||||
async def require_camera_access(
|
||||
camera_name: Optional[str] = None,
|
||||
request: Request = None,
|
||||
):
|
||||
"""Dependency to enforce camera access based on user role."""
|
||||
if camera_name is None:
|
||||
return # For lists, filter later
|
||||
|
||||
current_user = await get_current_user(request)
|
||||
if isinstance(current_user, JSONResponse):
|
||||
return current_user
|
||||
|
||||
role = current_user["role"]
|
||||
all_camera_names = set(request.app.frigate_config.cameras.keys())
|
||||
roles_dict = request.app.frigate_config.auth.roles
|
||||
allowed_cameras = User.get_allowed_cameras(role, roles_dict, all_camera_names)
|
||||
|
||||
# Admin or full access bypasses
|
||||
if role == "admin" or not roles_dict.get(role):
|
||||
return
|
||||
|
||||
if camera_name not in allowed_cameras:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail=f"Access denied to camera '{camera_name}'. Allowed: {allowed_cameras}",
|
||||
)
|
||||
|
||||
|
||||
async def get_allowed_cameras_for_filter(request: Request):
|
||||
"""Dependency to get allowed_cameras for filtering lists."""
|
||||
current_user = await get_current_user(request)
|
||||
if isinstance(current_user, JSONResponse):
|
||||
return [] # Unauthorized: no cameras
|
||||
|
||||
role = current_user["role"]
|
||||
all_camera_names = set(request.app.frigate_config.cameras.keys())
|
||||
roles_dict = request.app.frigate_config.auth.roles
|
||||
return User.get_allowed_cameras(role, roles_dict, all_camera_names)
|
||||
|
||||
994
frigate/api/camera.py
Normal file
994
frigate/api/camera.py
Normal file
@ -0,0 +1,994 @@
|
||||
"""Camera apis."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from importlib.util import find_spec
|
||||
from pathlib import Path
|
||||
from urllib.parse import quote_plus
|
||||
|
||||
import httpx
|
||||
import requests
|
||||
from fastapi import APIRouter, Depends, Query, Request, Response
|
||||
from fastapi.responses import JSONResponse
|
||||
from onvif import ONVIFCamera, ONVIFError
|
||||
from zeep.exceptions import Fault, TransportError
|
||||
from zeep.transports import AsyncTransport
|
||||
|
||||
from frigate.api.auth import require_role
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config.config import FrigateConfig
|
||||
from frigate.util.builtin import clean_camera_user_pass
|
||||
from frigate.util.image import run_ffmpeg_snapshot
|
||||
from frigate.util.services import ffprobe_stream
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(tags=[Tags.camera])
|
||||
|
||||
|
||||
def _is_valid_host(host: str) -> bool:
|
||||
"""
|
||||
Validate that the host is in a valid format.
|
||||
Allows private IPs since cameras are typically on local networks.
|
||||
Only blocks obviously malicious input to prevent injection attacks.
|
||||
"""
|
||||
try:
|
||||
# Remove port if present
|
||||
host_without_port = host.split(":")[0] if ":" in host else host
|
||||
|
||||
# Block whitespace, newlines, and control characters
|
||||
if not host_without_port or re.search(r"[\s\x00-\x1f]", host_without_port):
|
||||
return False
|
||||
|
||||
# Allow standard hostname/IP characters: alphanumeric, dots, hyphens
|
||||
if not re.match(r"^[a-zA-Z0-9.-]+$", host_without_port):
|
||||
return False
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
@router.get("/go2rtc/streams")
|
||||
def go2rtc_streams():
|
||||
r = requests.get("http://127.0.0.1:1984/api/streams")
|
||||
if not r.ok:
|
||||
logger.error("Failed to fetch streams from go2rtc")
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Error fetching stream data"}),
|
||||
status_code=500,
|
||||
)
|
||||
stream_data = r.json()
|
||||
for data in stream_data.values():
|
||||
for producer in data.get("producers") or []:
|
||||
producer["url"] = clean_camera_user_pass(producer.get("url", ""))
|
||||
return JSONResponse(content=stream_data)
|
||||
|
||||
|
||||
@router.get("/go2rtc/streams/{camera_name}")
|
||||
def go2rtc_camera_stream(request: Request, camera_name: str):
|
||||
r = requests.get(
|
||||
f"http://127.0.0.1:1984/api/streams?src={camera_name}&video=all&audio=allµphone"
|
||||
)
|
||||
if not r.ok:
|
||||
camera_config = request.app.frigate_config.cameras.get(camera_name)
|
||||
|
||||
if camera_config and camera_config.enabled:
|
||||
logger.error("Failed to fetch streams from go2rtc")
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Error fetching stream data"}),
|
||||
status_code=500,
|
||||
)
|
||||
stream_data = r.json()
|
||||
for producer in stream_data.get("producers", []):
|
||||
producer["url"] = clean_camera_user_pass(producer.get("url", ""))
|
||||
return JSONResponse(content=stream_data)
|
||||
|
||||
|
||||
@router.put(
|
||||
"/go2rtc/streams/{stream_name}", dependencies=[Depends(require_role(["admin"]))]
|
||||
)
|
||||
def go2rtc_add_stream(request: Request, stream_name: str, src: str = ""):
|
||||
"""Add or update a go2rtc stream configuration."""
|
||||
try:
|
||||
params = {"name": stream_name}
|
||||
if src:
|
||||
params["src"] = src
|
||||
|
||||
r = requests.put(
|
||||
"http://127.0.0.1:1984/api/streams",
|
||||
params=params,
|
||||
timeout=10,
|
||||
)
|
||||
if not r.ok:
|
||||
logger.error(f"Failed to add go2rtc stream {stream_name}: {r.text}")
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": f"Failed to add stream: {r.text}"}
|
||||
),
|
||||
status_code=r.status_code,
|
||||
)
|
||||
return JSONResponse(
|
||||
content={"success": True, "message": "Stream added successfully"}
|
||||
)
|
||||
except requests.RequestException as e:
|
||||
logger.error(f"Error communicating with go2rtc: {e}")
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "Error communicating with go2rtc",
|
||||
}
|
||||
),
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/go2rtc/streams/{stream_name}", dependencies=[Depends(require_role(["admin"]))]
|
||||
)
|
||||
def go2rtc_delete_stream(stream_name: str):
|
||||
"""Delete a go2rtc stream."""
|
||||
try:
|
||||
r = requests.delete(
|
||||
"http://127.0.0.1:1984/api/streams",
|
||||
params={"src": stream_name},
|
||||
timeout=10,
|
||||
)
|
||||
if not r.ok:
|
||||
logger.error(f"Failed to delete go2rtc stream {stream_name}: {r.text}")
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": f"Failed to delete stream: {r.text}"}
|
||||
),
|
||||
status_code=r.status_code,
|
||||
)
|
||||
return JSONResponse(
|
||||
content={"success": True, "message": "Stream deleted successfully"}
|
||||
)
|
||||
except requests.RequestException as e:
|
||||
logger.error(f"Error communicating with go2rtc: {e}")
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "Error communicating with go2rtc",
|
||||
}
|
||||
),
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/ffprobe")
|
||||
def ffprobe(request: Request, paths: str = "", detailed: bool = False):
|
||||
path_param = paths
|
||||
|
||||
if not path_param:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Path needs to be provided."}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if path_param.startswith("camera"):
|
||||
camera = path_param[7:]
|
||||
|
||||
if camera not in request.app.frigate_config.cameras.keys():
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": f"{camera} is not a valid camera."}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if not request.app.frigate_config.cameras[camera].enabled:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": f"{camera} is not enabled."}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
paths = map(
|
||||
lambda input: input.path,
|
||||
request.app.frigate_config.cameras[camera].ffmpeg.inputs,
|
||||
)
|
||||
elif "," in clean_camera_user_pass(path_param):
|
||||
paths = path_param.split(",")
|
||||
else:
|
||||
paths = [path_param]
|
||||
|
||||
# user has multiple streams
|
||||
output = []
|
||||
|
||||
for path in paths:
|
||||
ffprobe = ffprobe_stream(
|
||||
request.app.frigate_config.ffmpeg, path.strip(), detailed=detailed
|
||||
)
|
||||
|
||||
if ffprobe.returncode != 0:
|
||||
try:
|
||||
stderr_decoded = ffprobe.stderr.decode("utf-8")
|
||||
except UnicodeDecodeError:
|
||||
try:
|
||||
stderr_decoded = ffprobe.stderr.decode("unicode_escape")
|
||||
except Exception:
|
||||
stderr_decoded = str(ffprobe.stderr)
|
||||
|
||||
stderr_lines = [
|
||||
line.strip() for line in stderr_decoded.split("\n") if line.strip()
|
||||
]
|
||||
|
||||
result = {
|
||||
"return_code": ffprobe.returncode,
|
||||
"stderr": stderr_lines,
|
||||
"stdout": "",
|
||||
}
|
||||
else:
|
||||
result = {
|
||||
"return_code": ffprobe.returncode,
|
||||
"stderr": [],
|
||||
"stdout": json.loads(ffprobe.stdout.decode("unicode_escape").strip()),
|
||||
}
|
||||
|
||||
# Add detailed metadata if requested and probe was successful
|
||||
if detailed and ffprobe.returncode == 0 and result["stdout"]:
|
||||
try:
|
||||
probe_data = result["stdout"]
|
||||
metadata = {}
|
||||
|
||||
# Extract video stream information
|
||||
video_stream = None
|
||||
audio_stream = None
|
||||
|
||||
for stream in probe_data.get("streams", []):
|
||||
if stream.get("codec_type") == "video":
|
||||
video_stream = stream
|
||||
elif stream.get("codec_type") == "audio":
|
||||
audio_stream = stream
|
||||
|
||||
# Video metadata
|
||||
if video_stream:
|
||||
metadata["video"] = {
|
||||
"codec": video_stream.get("codec_name"),
|
||||
"width": video_stream.get("width"),
|
||||
"height": video_stream.get("height"),
|
||||
"fps": _extract_fps(video_stream.get("avg_frame_rate")),
|
||||
"pixel_format": video_stream.get("pix_fmt"),
|
||||
"profile": video_stream.get("profile"),
|
||||
"level": video_stream.get("level"),
|
||||
}
|
||||
|
||||
# Calculate resolution string
|
||||
if video_stream.get("width") and video_stream.get("height"):
|
||||
metadata["video"]["resolution"] = (
|
||||
f"{video_stream['width']}x{video_stream['height']}"
|
||||
)
|
||||
|
||||
# Audio metadata
|
||||
if audio_stream:
|
||||
metadata["audio"] = {
|
||||
"codec": audio_stream.get("codec_name"),
|
||||
"channels": audio_stream.get("channels"),
|
||||
"sample_rate": audio_stream.get("sample_rate"),
|
||||
"channel_layout": audio_stream.get("channel_layout"),
|
||||
}
|
||||
|
||||
# Container/format metadata
|
||||
if probe_data.get("format"):
|
||||
format_info = probe_data["format"]
|
||||
metadata["container"] = {
|
||||
"format": format_info.get("format_name"),
|
||||
"duration": format_info.get("duration"),
|
||||
"size": format_info.get("size"),
|
||||
}
|
||||
|
||||
result["metadata"] = metadata
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to extract detailed metadata: {e}")
|
||||
# Continue without metadata if parsing fails
|
||||
|
||||
output.append(result)
|
||||
|
||||
return JSONResponse(content=output)
|
||||
|
||||
|
||||
@router.get("/ffprobe/snapshot", dependencies=[Depends(require_role(["admin"]))])
|
||||
def ffprobe_snapshot(request: Request, url: str = "", timeout: int = 10):
|
||||
"""Get a snapshot from a stream URL using ffmpeg."""
|
||||
if not url:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "URL parameter is required"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
image_data, error = run_ffmpeg_snapshot(
|
||||
config.ffmpeg, url, "mjpeg", timeout=timeout
|
||||
)
|
||||
|
||||
if image_data:
|
||||
return Response(
|
||||
image_data,
|
||||
media_type="image/jpeg",
|
||||
headers={"Cache-Control": "no-store"},
|
||||
)
|
||||
elif error == "timeout":
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Timeout capturing snapshot"},
|
||||
status_code=408,
|
||||
)
|
||||
else:
|
||||
logger.error(f"ffmpeg failed: {error}")
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Failed to capture snapshot"},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/reolink/detect", dependencies=[Depends(require_role(["admin"]))])
|
||||
def reolink_detect(host: str = "", username: str = "", password: str = ""):
|
||||
"""
|
||||
Detect Reolink camera capabilities and recommend optimal protocol.
|
||||
|
||||
Queries the Reolink camera API to determine the camera's resolution
|
||||
and recommends either http-flv (for 5MP and below) or rtsp (for higher resolutions).
|
||||
"""
|
||||
if not host:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Host parameter is required"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
if not username:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Username parameter is required"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
if not password:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Password parameter is required"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
# Validate host format to prevent injection attacks
|
||||
if not _is_valid_host(host):
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Invalid host format"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
try:
|
||||
# URL-encode credentials to prevent injection
|
||||
encoded_user = quote_plus(username)
|
||||
encoded_password = quote_plus(password)
|
||||
api_url = f"http://{host}/api.cgi?cmd=GetEnc&user={encoded_user}&password={encoded_password}"
|
||||
|
||||
response = requests.get(api_url, timeout=5)
|
||||
|
||||
if not response.ok:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": f"Failed to connect to camera API: HTTP {response.status_code}",
|
||||
},
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
enc_data = data[0] if isinstance(data, list) and len(data) > 0 else data
|
||||
|
||||
stream_info = None
|
||||
if isinstance(enc_data, dict):
|
||||
if enc_data.get("value", {}).get("Enc"):
|
||||
stream_info = enc_data["value"]["Enc"]
|
||||
elif enc_data.get("Enc"):
|
||||
stream_info = enc_data["Enc"]
|
||||
|
||||
if not stream_info or not stream_info.get("mainStream"):
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": "Could not find stream information in API response",
|
||||
}
|
||||
)
|
||||
|
||||
main_stream = stream_info["mainStream"]
|
||||
width = main_stream.get("width", 0)
|
||||
height = main_stream.get("height", 0)
|
||||
|
||||
if not width or not height:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": "Could not determine camera resolution",
|
||||
}
|
||||
)
|
||||
|
||||
megapixels = (width * height) / 1_000_000
|
||||
protocol = "http-flv" if megapixels <= 5.0 else "rtsp"
|
||||
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": True,
|
||||
"protocol": protocol,
|
||||
"resolution": f"{width}x{height}",
|
||||
"megapixels": round(megapixels, 2),
|
||||
}
|
||||
)
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": "Connection timeout - camera did not respond",
|
||||
}
|
||||
)
|
||||
except requests.exceptions.RequestException:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": "Failed to connect to camera",
|
||||
}
|
||||
)
|
||||
except Exception:
|
||||
logger.exception(f"Error detecting Reolink camera at {host}")
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"protocol": None,
|
||||
"message": "Unable to detect camera capabilities",
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _extract_fps(r_frame_rate: str) -> float | None:
|
||||
"""Extract FPS from ffprobe avg_frame_rate / r_frame_rate string (e.g., '30/1' -> 30.0)"""
|
||||
if not r_frame_rate:
|
||||
return None
|
||||
try:
|
||||
num, den = r_frame_rate.split("/")
|
||||
return round(float(num) / float(den), 2)
|
||||
except (ValueError, ZeroDivisionError):
|
||||
return None
|
||||
|
||||
|
||||
@router.get(
|
||||
"/onvif/probe",
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Probe ONVIF device",
|
||||
description=(
|
||||
"Probe an ONVIF device to determine capabilities and optionally test available stream URIs. "
|
||||
"Query params: host (required), port (default 80), username, password, test (boolean), "
|
||||
"auth_type (basic or digest, default basic)."
|
||||
),
|
||||
)
|
||||
async def onvif_probe(
|
||||
request: Request,
|
||||
host: str = Query(None),
|
||||
port: int = Query(80),
|
||||
username: str = Query(""),
|
||||
password: str = Query(""),
|
||||
test: bool = Query(False),
|
||||
auth_type: str = Query("basic"), # Add auth_type parameter
|
||||
):
|
||||
"""
|
||||
Probe a single ONVIF device to determine capabilities.
|
||||
|
||||
Connects to an ONVIF device and queries for:
|
||||
- Device information (manufacturer, model)
|
||||
- Media profiles count
|
||||
- PTZ support
|
||||
- Available presets
|
||||
- Autotracking support
|
||||
|
||||
Query Parameters:
|
||||
host: Device host/IP address (required)
|
||||
port: Device port (default 80)
|
||||
username: ONVIF username (optional)
|
||||
password: ONVIF password (optional)
|
||||
test: run ffprobe on the stream (optional)
|
||||
auth_type: Authentication type - "basic" or "digest" (default "basic")
|
||||
|
||||
Returns:
|
||||
JSON with device capabilities information
|
||||
"""
|
||||
if not host:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "host parameter is required"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
# Validate host format
|
||||
if not _is_valid_host(host):
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Invalid host format"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
# Validate auth_type
|
||||
if auth_type not in ["basic", "digest"]:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "auth_type must be 'basic' or 'digest'",
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
onvif_camera = None
|
||||
|
||||
try:
|
||||
logger.debug(f"Probing ONVIF device at {host}:{port} with {auth_type} auth")
|
||||
|
||||
try:
|
||||
wsdl_base = None
|
||||
spec = find_spec("onvif")
|
||||
if spec and getattr(spec, "origin", None):
|
||||
wsdl_base = str(Path(spec.origin).parent / "wsdl")
|
||||
except Exception:
|
||||
wsdl_base = None
|
||||
|
||||
onvif_camera = ONVIFCamera(
|
||||
host, port, username or "", password or "", wsdl_dir=wsdl_base
|
||||
)
|
||||
|
||||
# Configure digest authentication if requested
|
||||
if auth_type == "digest" and username and password:
|
||||
# Create httpx client with digest auth
|
||||
auth = httpx.DigestAuth(username, password)
|
||||
client = httpx.AsyncClient(auth=auth, timeout=10.0)
|
||||
|
||||
# Replace the transport in the zeep client
|
||||
transport = AsyncTransport(client=client)
|
||||
|
||||
# Update the xaddr before setting transport
|
||||
await onvif_camera.update_xaddrs()
|
||||
|
||||
# Replace transport in all services
|
||||
if hasattr(onvif_camera, "devicemgmt"):
|
||||
onvif_camera.devicemgmt.zeep_client.transport = transport
|
||||
if hasattr(onvif_camera, "media"):
|
||||
onvif_camera.media.zeep_client.transport = transport
|
||||
if hasattr(onvif_camera, "ptz"):
|
||||
onvif_camera.ptz.zeep_client.transport = transport
|
||||
|
||||
logger.debug("Configured digest authentication")
|
||||
else:
|
||||
await onvif_camera.update_xaddrs()
|
||||
|
||||
# Get device information
|
||||
device_info = {
|
||||
"manufacturer": "Unknown",
|
||||
"model": "Unknown",
|
||||
"firmware_version": "Unknown",
|
||||
}
|
||||
try:
|
||||
device_service = await onvif_camera.create_devicemgmt_service()
|
||||
|
||||
# Update transport for device service if digest auth
|
||||
if auth_type == "digest" and username and password:
|
||||
auth = httpx.DigestAuth(username, password)
|
||||
client = httpx.AsyncClient(auth=auth, timeout=10.0)
|
||||
transport = AsyncTransport(client=client)
|
||||
device_service.zeep_client.transport = transport
|
||||
|
||||
device_info_resp = await device_service.GetDeviceInformation()
|
||||
manufacturer = getattr(device_info_resp, "Manufacturer", None) or (
|
||||
device_info_resp.get("Manufacturer")
|
||||
if isinstance(device_info_resp, dict)
|
||||
else None
|
||||
)
|
||||
model = getattr(device_info_resp, "Model", None) or (
|
||||
device_info_resp.get("Model")
|
||||
if isinstance(device_info_resp, dict)
|
||||
else None
|
||||
)
|
||||
firmware = getattr(device_info_resp, "FirmwareVersion", None) or (
|
||||
device_info_resp.get("FirmwareVersion")
|
||||
if isinstance(device_info_resp, dict)
|
||||
else None
|
||||
)
|
||||
device_info.update(
|
||||
{
|
||||
"manufacturer": manufacturer or "Unknown",
|
||||
"model": model or "Unknown",
|
||||
"firmware_version": firmware or "Unknown",
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to get device info: {e}")
|
||||
|
||||
# Get media profiles
|
||||
profiles = []
|
||||
profiles_count = 0
|
||||
first_profile_token = None
|
||||
ptz_config_token = None
|
||||
try:
|
||||
media_service = await onvif_camera.create_media_service()
|
||||
|
||||
# Update transport for media service if digest auth
|
||||
if auth_type == "digest" and username and password:
|
||||
auth = httpx.DigestAuth(username, password)
|
||||
client = httpx.AsyncClient(auth=auth, timeout=10.0)
|
||||
transport = AsyncTransport(client=client)
|
||||
media_service.zeep_client.transport = transport
|
||||
|
||||
profiles = await media_service.GetProfiles()
|
||||
profiles_count = len(profiles) if profiles else 0
|
||||
if profiles and len(profiles) > 0:
|
||||
p = profiles[0]
|
||||
first_profile_token = getattr(p, "token", None) or (
|
||||
p.get("token") if isinstance(p, dict) else None
|
||||
)
|
||||
# Get PTZ configuration token from the profile
|
||||
ptz_configuration = getattr(p, "PTZConfiguration", None) or (
|
||||
p.get("PTZConfiguration") if isinstance(p, dict) else None
|
||||
)
|
||||
if ptz_configuration:
|
||||
ptz_config_token = getattr(ptz_configuration, "token", None) or (
|
||||
ptz_configuration.get("token")
|
||||
if isinstance(ptz_configuration, dict)
|
||||
else None
|
||||
)
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to get media profiles: {e}")
|
||||
|
||||
# Check PTZ support and capabilities
|
||||
ptz_supported = False
|
||||
presets_count = 0
|
||||
autotrack_supported = False
|
||||
|
||||
try:
|
||||
ptz_service = await onvif_camera.create_ptz_service()
|
||||
|
||||
# Update transport for PTZ service if digest auth
|
||||
if auth_type == "digest" and username and password:
|
||||
auth = httpx.DigestAuth(username, password)
|
||||
client = httpx.AsyncClient(auth=auth, timeout=10.0)
|
||||
transport = AsyncTransport(client=client)
|
||||
ptz_service.zeep_client.transport = transport
|
||||
|
||||
# Check if PTZ service is available
|
||||
try:
|
||||
await ptz_service.GetServiceCapabilities()
|
||||
ptz_supported = True
|
||||
logger.debug("PTZ service is available")
|
||||
except Exception as e:
|
||||
logger.debug(f"PTZ service not available: {e}")
|
||||
ptz_supported = False
|
||||
|
||||
# Try to get presets if PTZ is supported and we have a profile
|
||||
if ptz_supported and first_profile_token:
|
||||
try:
|
||||
presets_resp = await ptz_service.GetPresets(
|
||||
{"ProfileToken": first_profile_token}
|
||||
)
|
||||
presets_count = len(presets_resp) if presets_resp else 0
|
||||
logger.debug(f"Found {presets_count} presets")
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to get presets: {e}")
|
||||
presets_count = 0
|
||||
|
||||
# Check for autotracking support - requires both FOV relative movement and MoveStatus
|
||||
if ptz_supported and first_profile_token and ptz_config_token:
|
||||
# First check for FOV relative movement support
|
||||
pt_r_fov_supported = False
|
||||
try:
|
||||
config_request = ptz_service.create_type("GetConfigurationOptions")
|
||||
config_request.ConfigurationToken = ptz_config_token
|
||||
ptz_config = await ptz_service.GetConfigurationOptions(
|
||||
config_request
|
||||
)
|
||||
|
||||
if ptz_config:
|
||||
# Check for pt-r-fov support
|
||||
spaces = getattr(ptz_config, "Spaces", None) or (
|
||||
ptz_config.get("Spaces")
|
||||
if isinstance(ptz_config, dict)
|
||||
else None
|
||||
)
|
||||
|
||||
if spaces:
|
||||
rel_pan_tilt_space = getattr(
|
||||
spaces, "RelativePanTiltTranslationSpace", None
|
||||
) or (
|
||||
spaces.get("RelativePanTiltTranslationSpace")
|
||||
if isinstance(spaces, dict)
|
||||
else None
|
||||
)
|
||||
|
||||
if rel_pan_tilt_space:
|
||||
# Look for FOV space
|
||||
for i, space in enumerate(rel_pan_tilt_space):
|
||||
uri = None
|
||||
if isinstance(space, dict):
|
||||
uri = space.get("URI")
|
||||
else:
|
||||
uri = getattr(space, "URI", None)
|
||||
|
||||
if uri and "TranslationSpaceFov" in uri:
|
||||
pt_r_fov_supported = True
|
||||
logger.debug(
|
||||
"FOV relative movement (pt-r-fov) supported"
|
||||
)
|
||||
break
|
||||
|
||||
logger.debug(f"PTZ config spaces: {ptz_config}")
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to check FOV relative movement: {e}")
|
||||
pt_r_fov_supported = False
|
||||
|
||||
# Now check for MoveStatus support via GetServiceCapabilities
|
||||
if pt_r_fov_supported:
|
||||
try:
|
||||
service_capabilities_request = ptz_service.create_type(
|
||||
"GetServiceCapabilities"
|
||||
)
|
||||
service_capabilities = await ptz_service.GetServiceCapabilities(
|
||||
service_capabilities_request
|
||||
)
|
||||
|
||||
# Look for MoveStatus in the capabilities
|
||||
move_status_capable = False
|
||||
if service_capabilities:
|
||||
# Try to find MoveStatus key recursively
|
||||
def find_move_status(obj, key="MoveStatus"):
|
||||
if isinstance(obj, dict):
|
||||
if key in obj:
|
||||
return obj[key]
|
||||
for v in obj.values():
|
||||
result = find_move_status(v, key)
|
||||
if result is not None:
|
||||
return result
|
||||
elif hasattr(obj, key):
|
||||
return getattr(obj, key)
|
||||
elif hasattr(obj, "__dict__"):
|
||||
for v in vars(obj).values():
|
||||
result = find_move_status(v, key)
|
||||
if result is not None:
|
||||
return result
|
||||
return None
|
||||
|
||||
move_status_value = find_move_status(service_capabilities)
|
||||
|
||||
# MoveStatus should return "true" if supported
|
||||
if isinstance(move_status_value, bool):
|
||||
move_status_capable = move_status_value
|
||||
elif isinstance(move_status_value, str):
|
||||
move_status_capable = (
|
||||
move_status_value.lower() == "true"
|
||||
)
|
||||
|
||||
logger.debug(f"MoveStatus capability: {move_status_value}")
|
||||
|
||||
# Autotracking is supported if both conditions are met
|
||||
autotrack_supported = pt_r_fov_supported and move_status_capable
|
||||
|
||||
if autotrack_supported:
|
||||
logger.debug(
|
||||
"Autotracking fully supported (pt-r-fov + MoveStatus)"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"Autotracking not fully supported - pt-r-fov: {pt_r_fov_supported}, MoveStatus: {move_status_capable}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to check MoveStatus support: {e}")
|
||||
autotrack_supported = False
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to probe PTZ service: {e}")
|
||||
|
||||
result = {
|
||||
"success": True,
|
||||
"host": host,
|
||||
"port": port,
|
||||
"manufacturer": device_info["manufacturer"],
|
||||
"model": device_info["model"],
|
||||
"firmware_version": device_info["firmware_version"],
|
||||
"profiles_count": profiles_count,
|
||||
"ptz_supported": ptz_supported,
|
||||
"presets_count": presets_count,
|
||||
"autotrack_supported": autotrack_supported,
|
||||
}
|
||||
|
||||
# Gather RTSP candidates
|
||||
rtsp_candidates: list[dict] = []
|
||||
try:
|
||||
media_service = await onvif_camera.create_media_service()
|
||||
|
||||
# Update transport for media service if digest auth
|
||||
if auth_type == "digest" and username and password:
|
||||
auth = httpx.DigestAuth(username, password)
|
||||
client = httpx.AsyncClient(auth=auth, timeout=10.0)
|
||||
transport = AsyncTransport(client=client)
|
||||
media_service.zeep_client.transport = transport
|
||||
|
||||
if profiles_count and media_service:
|
||||
for p in profiles or []:
|
||||
token = getattr(p, "token", None) or (
|
||||
p.get("token") if isinstance(p, dict) else None
|
||||
)
|
||||
if not token:
|
||||
continue
|
||||
try:
|
||||
stream_setup = {
|
||||
"Stream": "RTP-Unicast",
|
||||
"Transport": {"Protocol": "RTSP"},
|
||||
}
|
||||
stream_req = {
|
||||
"ProfileToken": token,
|
||||
"StreamSetup": stream_setup,
|
||||
}
|
||||
stream_uri_resp = await media_service.GetStreamUri(stream_req)
|
||||
uri = (
|
||||
stream_uri_resp.get("Uri")
|
||||
if isinstance(stream_uri_resp, dict)
|
||||
else getattr(stream_uri_resp, "Uri", None)
|
||||
)
|
||||
if uri:
|
||||
logger.debug(
|
||||
f"GetStreamUri returned for token {token}: {uri}"
|
||||
)
|
||||
# If credentials were provided, do NOT add the unauthenticated URI.
|
||||
try:
|
||||
if isinstance(uri, str) and uri.startswith("rtsp://"):
|
||||
if username and password and "@" not in uri:
|
||||
# Inject URL-encoded credentials and add only the
|
||||
# authenticated version.
|
||||
cred = f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
injected = uri.replace(
|
||||
"rtsp://", f"rtsp://{cred}", 1
|
||||
)
|
||||
rtsp_candidates.append(
|
||||
{
|
||||
"source": "GetStreamUri",
|
||||
"profile_token": token,
|
||||
"uri": injected,
|
||||
}
|
||||
)
|
||||
else:
|
||||
# No credentials provided or URI already contains
|
||||
# credentials — add the URI as returned.
|
||||
rtsp_candidates.append(
|
||||
{
|
||||
"source": "GetStreamUri",
|
||||
"profile_token": token,
|
||||
"uri": uri,
|
||||
}
|
||||
)
|
||||
else:
|
||||
# Non-RTSP URIs (e.g., http-flv) — add as returned.
|
||||
rtsp_candidates.append(
|
||||
{
|
||||
"source": "GetStreamUri",
|
||||
"profile_token": token,
|
||||
"uri": uri,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.debug(
|
||||
f"Skipping stream URI for token {token} due to processing error: {e}"
|
||||
)
|
||||
continue
|
||||
except Exception:
|
||||
logger.debug(
|
||||
f"GetStreamUri failed for token {token}", exc_info=True
|
||||
)
|
||||
continue
|
||||
|
||||
# Add common RTSP patterns as fallback
|
||||
if not rtsp_candidates:
|
||||
common_paths = [
|
||||
"/h264",
|
||||
"/live.sdp",
|
||||
"/media.amp",
|
||||
"/Streaming/Channels/101",
|
||||
"/Streaming/Channels/1",
|
||||
"/stream1",
|
||||
"/cam/realmonitor?channel=1&subtype=0",
|
||||
"/11",
|
||||
]
|
||||
# Use URL-encoded credentials for pattern fallback URIs when provided
|
||||
auth_str = (
|
||||
f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
if username and password
|
||||
else ""
|
||||
)
|
||||
rtsp_port = 554
|
||||
for path in common_paths:
|
||||
uri = f"rtsp://{auth_str}{host}:{rtsp_port}{path}"
|
||||
rtsp_candidates.append({"source": "pattern", "uri": uri})
|
||||
except Exception:
|
||||
logger.debug("Failed to collect RTSP candidates")
|
||||
|
||||
# Optionally test RTSP candidates using ffprobe_stream
|
||||
tested_candidates = []
|
||||
if test and rtsp_candidates:
|
||||
for c in rtsp_candidates:
|
||||
uri = c["uri"]
|
||||
to_test = [uri]
|
||||
try:
|
||||
if (
|
||||
username
|
||||
and password
|
||||
and isinstance(uri, str)
|
||||
and uri.startswith("rtsp://")
|
||||
and "@" not in uri
|
||||
):
|
||||
cred = f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
cred_uri = uri.replace("rtsp://", f"rtsp://{cred}", 1)
|
||||
if cred_uri not in to_test:
|
||||
to_test.append(cred_uri)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
for test_uri in to_test:
|
||||
try:
|
||||
probe = ffprobe_stream(
|
||||
request.app.frigate_config.ffmpeg, test_uri, detailed=False
|
||||
)
|
||||
print(probe)
|
||||
ok = probe is not None and getattr(probe, "returncode", 1) == 0
|
||||
tested_candidates.append(
|
||||
{
|
||||
"uri": test_uri,
|
||||
"source": c.get("source"),
|
||||
"ok": ok,
|
||||
"profile_token": c.get("profile_token"),
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.debug(f"Unable to probe stream: {e}")
|
||||
tested_candidates.append(
|
||||
{
|
||||
"uri": test_uri,
|
||||
"source": c.get("source"),
|
||||
"ok": False,
|
||||
"profile_token": c.get("profile_token"),
|
||||
}
|
||||
)
|
||||
|
||||
result["rtsp_candidates"] = rtsp_candidates
|
||||
if test:
|
||||
result["rtsp_tested"] = tested_candidates
|
||||
|
||||
logger.debug(f"ONVIF probe successful: {result}")
|
||||
return JSONResponse(content=result)
|
||||
|
||||
except ONVIFError as e:
|
||||
logger.warning(f"ONVIF error probing {host}:{port}: {e}")
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "ONVIF error"},
|
||||
status_code=400,
|
||||
)
|
||||
except (Fault, TransportError) as e:
|
||||
logger.warning(f"Connection error probing {host}:{port}: {e}")
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Connection error"},
|
||||
status_code=503,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Error probing ONVIF device at {host}:{port}, {e}")
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Probe failed"},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
finally:
|
||||
# Best-effort cleanup of ONVIF camera client session
|
||||
if onvif_camera is not None:
|
||||
try:
|
||||
# Check if the camera has a close method and call it
|
||||
if hasattr(onvif_camera, "close"):
|
||||
await onvif_camera.close()
|
||||
except Exception as e:
|
||||
logger.debug(f"Error closing ONVIF camera session: {e}")
|
||||
@ -3,7 +3,9 @@
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import shutil
|
||||
import string
|
||||
from typing import Any
|
||||
|
||||
import cv2
|
||||
@ -14,20 +16,46 @@ from peewee import DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.auth import require_role
|
||||
from frigate.api.defs.request.classification_body import RenameFaceBody
|
||||
from frigate.api.defs.request.classification_body import (
|
||||
AudioTranscriptionBody,
|
||||
DeleteFaceImagesBody,
|
||||
GenerateObjectExamplesBody,
|
||||
GenerateStateExamplesBody,
|
||||
RenameFaceBody,
|
||||
)
|
||||
from frigate.api.defs.response.classification_response import (
|
||||
FaceRecognitionResponse,
|
||||
FacesResponse,
|
||||
)
|
||||
from frigate.api.defs.response.generic_response import GenericResponse
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.config.camera import DetectConfig
|
||||
from frigate.const import FACE_DIR
|
||||
from frigate.const import CLIPS_DIR, FACE_DIR, MODEL_CACHE_DIR
|
||||
from frigate.embeddings import EmbeddingsContext
|
||||
from frigate.models import Event
|
||||
from frigate.util.path import get_event_snapshot
|
||||
from frigate.util.classification import (
|
||||
collect_object_classification_examples,
|
||||
collect_state_classification_examples,
|
||||
get_dataset_image_count,
|
||||
read_training_metadata,
|
||||
)
|
||||
from frigate.util.file import get_event_snapshot
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(tags=[Tags.events])
|
||||
router = APIRouter(tags=[Tags.classification])
|
||||
|
||||
|
||||
@router.get("/faces")
|
||||
@router.get(
|
||||
"/faces",
|
||||
response_model=FacesResponse,
|
||||
summary="Get all registered faces",
|
||||
description="""Returns a dictionary mapping face names to lists of image filenames.
|
||||
Each key represents a registered face name, and the value is a list of image
|
||||
files associated with that face. Supported image formats include .webp, .png,
|
||||
.jpg, and .jpeg.""",
|
||||
)
|
||||
def get_faces():
|
||||
face_dict: dict[str, list[str]] = {}
|
||||
|
||||
@ -51,7 +79,15 @@ def get_faces():
|
||||
return JSONResponse(status_code=200, content=face_dict)
|
||||
|
||||
|
||||
@router.post("/faces/reprocess", dependencies=[Depends(require_role(["admin"]))])
|
||||
@router.post(
|
||||
"/faces/reprocess",
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Reprocess a face training image",
|
||||
description="""Reprocesses a face training image to update the prediction.
|
||||
Requires face recognition to be enabled in the configuration. The training file
|
||||
must exist in the faces/train directory. Returns a success response or an error
|
||||
message if face recognition is not enabled or the training file is invalid.""",
|
||||
)
|
||||
def reclassify_face(request: Request, body: dict = None):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -78,13 +114,32 @@ def reclassify_face(request: Request, body: dict = None):
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
response = context.reprocess_face(training_file)
|
||||
|
||||
if not isinstance(response, dict):
|
||||
return JSONResponse(
|
||||
status_code=500,
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Could not process request.",
|
||||
},
|
||||
)
|
||||
|
||||
return JSONResponse(
|
||||
status_code=200 if response.get("success", True) else 400,
|
||||
content=response,
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post("/faces/train/{name}/classify")
|
||||
@router.post(
|
||||
"/faces/train/{name}/classify",
|
||||
response_model=GenericResponse,
|
||||
summary="Classify and save a face training image",
|
||||
description="""Adds a training image to a specific face name for face recognition.
|
||||
Accepts either a training file from the train directory or an event_id to extract
|
||||
the face from. The image is saved to the face's directory and the face classifier
|
||||
is cleared to incorporate the new training data. Returns a success message with
|
||||
the new filename or an error if face recognition is not enabled, the file/event
|
||||
is invalid, or the face cannot be extracted.""",
|
||||
)
|
||||
def train_face(request: Request, name: str, body: dict = None):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -123,8 +178,7 @@ def train_face(request: Request, name: str, body: dict = None):
|
||||
new_name = f"{sanitized_name}-{datetime.datetime.now().timestamp()}.webp"
|
||||
new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
|
||||
|
||||
if not os.path.exists(new_file_folder):
|
||||
os.mkdir(new_file_folder)
|
||||
os.makedirs(new_file_folder, exist_ok=True)
|
||||
|
||||
if training_file_name:
|
||||
shutil.move(training_file, os.path.join(new_file_folder, new_name))
|
||||
@ -188,7 +242,16 @@ def train_face(request: Request, name: str, body: dict = None):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/faces/{name}/create", dependencies=[Depends(require_role(["admin"]))])
|
||||
@router.post(
|
||||
"/faces/{name}/create",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Create a new face name",
|
||||
description="""Creates a new folder for a face name in the faces directory.
|
||||
This is used to organize face training images. The face name is sanitized and
|
||||
spaces are replaced with underscores. Returns a success message or an error if
|
||||
face recognition is not enabled.""",
|
||||
)
|
||||
async def create_face(request: Request, name: str):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -205,7 +268,16 @@ async def create_face(request: Request, name: str):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/faces/{name}/register", dependencies=[Depends(require_role(["admin"]))])
|
||||
@router.post(
|
||||
"/faces/{name}/register",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Register a face image",
|
||||
description="""Registers a face image for a specific face name by uploading an image file.
|
||||
The uploaded image is processed and added to the face recognition system. Returns a
|
||||
success response with details about the registration, or an error if face recognition
|
||||
is not enabled or the image cannot be processed.""",
|
||||
)
|
||||
async def register_face(request: Request, name: str, file: UploadFile):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -231,7 +303,14 @@ async def register_face(request: Request, name: str, file: UploadFile):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/faces/recognize")
|
||||
@router.post(
|
||||
"/faces/recognize",
|
||||
response_model=FaceRecognitionResponse,
|
||||
summary="Recognize a face from an uploaded image",
|
||||
description="""Recognizes a face from an uploaded image file by comparing it against
|
||||
registered faces in the system. Returns the recognized face name and confidence score,
|
||||
or an error if face recognition is not enabled or the image cannot be processed.""",
|
||||
)
|
||||
async def recognize_face(request: Request, file: UploadFile):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -257,28 +336,38 @@ async def recognize_face(request: Request, file: UploadFile):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/faces/{name}/delete", dependencies=[Depends(require_role(["admin"]))])
|
||||
def deregister_faces(request: Request, name: str, body: dict = None):
|
||||
@router.post(
|
||||
"/faces/{name}/delete",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Delete face images",
|
||||
description="""Deletes specific face images for a given face name. The image IDs must belong
|
||||
to the specified face folder. To delete an entire face folder, all image IDs in that
|
||||
folder must be sent. Returns a success message or an error if face recognition is not enabled.""",
|
||||
)
|
||||
def deregister_faces(request: Request, name: str, body: DeleteFaceImagesBody):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
status_code=400,
|
||||
content={"message": "Face recognition is not enabled.", "success": False},
|
||||
)
|
||||
|
||||
json: dict[str, Any] = body or {}
|
||||
list_of_ids = json.get("ids", "")
|
||||
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
context.delete_face_ids(
|
||||
name, map(lambda file: sanitize_filename(file), list_of_ids)
|
||||
)
|
||||
context.delete_face_ids(name, map(lambda file: sanitize_filename(file), body.ids))
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Successfully deleted faces."}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.put("/faces/{old_name}/rename", dependencies=[Depends(require_role(["admin"]))])
|
||||
@router.put(
|
||||
"/faces/{old_name}/rename",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Rename a face name",
|
||||
description="""Renames a face name in the system. The old name must exist and the new
|
||||
name must be valid. Returns a success message or an error if face recognition is not enabled.""",
|
||||
)
|
||||
def rename_face(request: Request, old_name: str, body: RenameFaceBody):
|
||||
if not request.app.frigate_config.face_recognition.enabled:
|
||||
return JSONResponse(
|
||||
@ -307,7 +396,14 @@ def rename_face(request: Request, old_name: str, body: RenameFaceBody):
|
||||
)
|
||||
|
||||
|
||||
@router.put("/lpr/reprocess")
|
||||
@router.put(
|
||||
"/lpr/reprocess",
|
||||
summary="Reprocess a license plate",
|
||||
description="""Reprocesses a license plate image to update the plate.
|
||||
Requires license plate recognition to be enabled in the configuration. The event_id
|
||||
must exist in the database. Returns a success message or an error if license plate
|
||||
recognition is not enabled or the event_id is invalid.""",
|
||||
)
|
||||
def reprocess_license_plate(request: Request, event_id: str):
|
||||
if not request.app.frigate_config.lpr.enabled:
|
||||
message = "License plate recognition is not enabled."
|
||||
@ -340,7 +436,14 @@ def reprocess_license_plate(request: Request, event_id: str):
|
||||
)
|
||||
|
||||
|
||||
@router.put("/reindex", dependencies=[Depends(require_role(["admin"]))])
|
||||
@router.put(
|
||||
"/reindex",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Reindex embeddings",
|
||||
description="""Reindexes the embeddings for all tracked objects.
|
||||
Requires semantic search to be enabled in the configuration. Returns a success message or an error if semantic search is not enabled.""",
|
||||
)
|
||||
def reindex_embeddings(request: Request):
|
||||
if not request.app.frigate_config.semantic_search.enabled:
|
||||
message = (
|
||||
@ -384,3 +487,502 @@ def reindex_embeddings(request: Request):
|
||||
},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.put(
|
||||
"/audio/transcribe",
|
||||
response_model=GenericResponse,
|
||||
summary="Transcribe audio",
|
||||
description="""Transcribes audio from a specific event.
|
||||
Requires audio transcription to be enabled in the configuration. The event_id
|
||||
must exist in the database. Returns a success message or an error if audio transcription is not enabled or the event_id is invalid.""",
|
||||
)
|
||||
def transcribe_audio(request: Request, body: AudioTranscriptionBody):
|
||||
event_id = body.event_id
|
||||
|
||||
try:
|
||||
event = Event.get(Event.id == event_id)
|
||||
except DoesNotExist:
|
||||
message = f"Event {event_id} not found"
|
||||
logger.error(message)
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": message}), status_code=404
|
||||
)
|
||||
|
||||
if not request.app.frigate_config.cameras[event.camera].audio_transcription.enabled:
|
||||
message = f"Audio transcription is not enabled for {event.camera}."
|
||||
logger.error(message)
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": message,
|
||||
}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
response = context.transcribe_audio(model_to_dict(event))
|
||||
|
||||
if response == "started":
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": True,
|
||||
"message": "Audio transcription has started.",
|
||||
},
|
||||
status_code=202, # 202 Accepted
|
||||
)
|
||||
elif response == "in_progress":
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Audio transcription for a speech event is currently in progress. Try again later.",
|
||||
},
|
||||
status_code=409, # 409 Conflict
|
||||
)
|
||||
else:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Failed to transcribe audio.",
|
||||
},
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
# custom classification training
|
||||
|
||||
|
||||
@router.get(
|
||||
"/classification/{name}/dataset",
|
||||
summary="Get classification dataset",
|
||||
description="""Gets the dataset for a specific classification model.
|
||||
The name must exist in the classification models. Returns a success message or an error if the name is invalid.""",
|
||||
)
|
||||
def get_classification_dataset(name: str):
|
||||
dataset_dict: dict[str, list[str]] = {}
|
||||
|
||||
dataset_dir = os.path.join(CLIPS_DIR, sanitize_filename(name), "dataset")
|
||||
|
||||
if not os.path.exists(dataset_dir):
|
||||
return JSONResponse(
|
||||
status_code=200, content={"categories": {}, "training_metadata": None}
|
||||
)
|
||||
|
||||
for category_name in os.listdir(dataset_dir):
|
||||
category_dir = os.path.join(dataset_dir, category_name)
|
||||
|
||||
if not os.path.isdir(category_dir):
|
||||
continue
|
||||
|
||||
dataset_dict[category_name] = []
|
||||
|
||||
for file in filter(
|
||||
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
|
||||
os.listdir(category_dir),
|
||||
):
|
||||
dataset_dict[category_name].append(file)
|
||||
|
||||
# Get training metadata
|
||||
metadata = read_training_metadata(sanitize_filename(name))
|
||||
current_image_count = get_dataset_image_count(sanitize_filename(name))
|
||||
|
||||
if metadata is None:
|
||||
training_metadata = {
|
||||
"has_trained": False,
|
||||
"last_training_date": None,
|
||||
"last_training_image_count": 0,
|
||||
"current_image_count": current_image_count,
|
||||
"new_images_count": current_image_count,
|
||||
"dataset_changed": current_image_count > 0,
|
||||
}
|
||||
else:
|
||||
last_training_count = metadata.get("last_training_image_count", 0)
|
||||
# Dataset has changed if count is different (either added or deleted images)
|
||||
dataset_changed = current_image_count != last_training_count
|
||||
# Only show positive count for new images (ignore deletions in the count display)
|
||||
new_images_count = max(0, current_image_count - last_training_count)
|
||||
training_metadata = {
|
||||
"has_trained": True,
|
||||
"last_training_date": metadata.get("last_training_date"),
|
||||
"last_training_image_count": last_training_count,
|
||||
"current_image_count": current_image_count,
|
||||
"new_images_count": new_images_count,
|
||||
"dataset_changed": dataset_changed,
|
||||
}
|
||||
|
||||
return JSONResponse(
|
||||
status_code=200,
|
||||
content={
|
||||
"categories": dataset_dict,
|
||||
"training_metadata": training_metadata,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/classification/{name}/train",
|
||||
summary="Get classification train images",
|
||||
description="""Gets the train images for a specific classification model.
|
||||
The name must exist in the classification models. Returns a success message or an error if the name is invalid.""",
|
||||
)
|
||||
def get_classification_images(name: str):
|
||||
train_dir = os.path.join(CLIPS_DIR, sanitize_filename(name), "train")
|
||||
|
||||
if not os.path.exists(train_dir):
|
||||
return JSONResponse(status_code=200, content=[])
|
||||
|
||||
return JSONResponse(
|
||||
status_code=200,
|
||||
content=list(
|
||||
filter(
|
||||
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
|
||||
os.listdir(train_dir),
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/{name}/train",
|
||||
response_model=GenericResponse,
|
||||
summary="Train a classification model",
|
||||
description="""Trains a specific classification model.
|
||||
The name must exist in the classification models. Returns a success message or an error if the name is invalid.""",
|
||||
)
|
||||
async def train_configured_model(request: Request, name: str):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if name not in config.classification.custom:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"{name} is not a known classification model.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
context.start_classification_training(name)
|
||||
return JSONResponse(
|
||||
content={"success": True, "message": "Started classification model training."},
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/{name}/dataset/{category}/delete",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Delete classification dataset images",
|
||||
description="""Deletes specific dataset images for a given classification model and category.
|
||||
The image IDs must belong to the specified category. Returns a success message or an error if the name or category is invalid.""",
|
||||
)
|
||||
def delete_classification_dataset_images(
|
||||
request: Request, name: str, category: str, body: dict = None
|
||||
):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if name not in config.classification.custom:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"{name} is not a known classification model.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
json: dict[str, Any] = body or {}
|
||||
list_of_ids = json.get("ids", "")
|
||||
folder = os.path.join(
|
||||
CLIPS_DIR, sanitize_filename(name), "dataset", sanitize_filename(category)
|
||||
)
|
||||
|
||||
for id in list_of_ids:
|
||||
file_path = os.path.join(folder, sanitize_filename(id))
|
||||
|
||||
if os.path.isfile(file_path):
|
||||
os.unlink(file_path)
|
||||
|
||||
if os.path.exists(folder) and not os.listdir(folder):
|
||||
os.rmdir(folder)
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Successfully deleted images."}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.put(
|
||||
"/classification/{name}/dataset/{old_category}/rename",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Rename a classification category",
|
||||
description="""Renames a classification category for a given classification model.
|
||||
The old category must exist and the new name must be valid. Returns a success message or an error if the name is invalid.""",
|
||||
)
|
||||
def rename_classification_category(
|
||||
request: Request, name: str, old_category: str, body: dict = None
|
||||
):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if name not in config.classification.custom:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"{name} is not a known classification model.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
json: dict[str, Any] = body or {}
|
||||
new_category = sanitize_filename(json.get("new_category", ""))
|
||||
|
||||
if not new_category:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "New category name is required.",
|
||||
}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
old_folder = os.path.join(
|
||||
CLIPS_DIR, sanitize_filename(name), "dataset", sanitize_filename(old_category)
|
||||
)
|
||||
new_folder = os.path.join(
|
||||
CLIPS_DIR, sanitize_filename(name), "dataset", new_category
|
||||
)
|
||||
|
||||
if not os.path.exists(old_folder):
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"Category {old_category} does not exist.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if os.path.exists(new_folder):
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"Category {new_category} already exists.",
|
||||
}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
try:
|
||||
os.rename(old_folder, new_folder)
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": True,
|
||||
"message": f"Successfully renamed category to {new_category}.",
|
||||
}
|
||||
),
|
||||
status_code=200,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error renaming category: {e}")
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "Failed to rename category",
|
||||
}
|
||||
),
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/{name}/dataset/categorize",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Categorize a classification image",
|
||||
description="""Categorizes a specific classification image for a given classification model and category.
|
||||
The image must exist in the specified category. Returns a success message or an error if the name or category is invalid.""",
|
||||
)
|
||||
def categorize_classification_image(request: Request, name: str, body: dict = None):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if name not in config.classification.custom:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"{name} is not a known classification model.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
json: dict[str, Any] = body or {}
|
||||
category = sanitize_filename(json.get("category", ""))
|
||||
training_file_name = sanitize_filename(json.get("training_file", ""))
|
||||
training_file = os.path.join(
|
||||
CLIPS_DIR, sanitize_filename(name), "train", training_file_name
|
||||
)
|
||||
|
||||
if training_file_name and not os.path.isfile(training_file):
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"Invalid filename or no file exists: {training_file_name}",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
random_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
timestamp = datetime.datetime.now().timestamp()
|
||||
new_name = f"{category}-{timestamp}-{random_id}.png"
|
||||
new_file_folder = os.path.join(
|
||||
CLIPS_DIR, sanitize_filename(name), "dataset", category
|
||||
)
|
||||
|
||||
os.makedirs(new_file_folder, exist_ok=True)
|
||||
|
||||
# use opencv because webp images can not be used to train
|
||||
img = cv2.imread(training_file)
|
||||
cv2.imwrite(os.path.join(new_file_folder, new_name), img)
|
||||
os.unlink(training_file)
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Successfully categorized image."}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/{name}/train/delete",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Delete classification train images",
|
||||
description="""Deletes specific train images for a given classification model.
|
||||
The image IDs must belong to the specified train folder. Returns a success message or an error if the name is invalid.""",
|
||||
)
|
||||
def delete_classification_train_images(request: Request, name: str, body: dict = None):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if name not in config.classification.custom:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": f"{name} is not a known classification model.",
|
||||
}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
json: dict[str, Any] = body or {}
|
||||
list_of_ids = json.get("ids", "")
|
||||
folder = os.path.join(CLIPS_DIR, sanitize_filename(name), "train")
|
||||
|
||||
for id in list_of_ids:
|
||||
file_path = os.path.join(folder, sanitize_filename(id))
|
||||
|
||||
if os.path.isfile(file_path):
|
||||
os.unlink(file_path)
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Successfully deleted images."}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/generate_examples/state",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Generate state classification examples",
|
||||
)
|
||||
async def generate_state_examples(request: Request, body: GenerateStateExamplesBody):
|
||||
"""Generate examples for state classification."""
|
||||
model_name = sanitize_filename(body.model_name)
|
||||
cameras_normalized = {
|
||||
camera_name: tuple(crop)
|
||||
for camera_name, crop in body.cameras.items()
|
||||
if camera_name in request.app.frigate_config.cameras
|
||||
}
|
||||
|
||||
collect_state_classification_examples(model_name, cameras_normalized)
|
||||
|
||||
return JSONResponse(
|
||||
content={"success": True, "message": "Example generation completed"},
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/classification/generate_examples/object",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Generate object classification examples",
|
||||
)
|
||||
async def generate_object_examples(request: Request, body: GenerateObjectExamplesBody):
|
||||
"""Generate examples for object classification."""
|
||||
model_name = sanitize_filename(body.model_name)
|
||||
collect_object_classification_examples(model_name, body.label)
|
||||
|
||||
return JSONResponse(
|
||||
content={"success": True, "message": "Example generation completed"},
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/classification/{name}",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Delete a classification model",
|
||||
description="""Deletes a specific classification model and all its associated data.
|
||||
Works even if the model is not in the config (e.g., partially created during wizard).
|
||||
Returns a success message.""",
|
||||
)
|
||||
def delete_classification_model(request: Request, name: str):
|
||||
sanitized_name = sanitize_filename(name)
|
||||
|
||||
# Delete the classification model's data directory in clips
|
||||
data_dir = os.path.join(CLIPS_DIR, sanitized_name)
|
||||
if os.path.exists(data_dir):
|
||||
try:
|
||||
shutil.rmtree(data_dir)
|
||||
logger.info(f"Deleted classification data directory for {name}")
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to delete data directory for {name}: {e}")
|
||||
|
||||
# Delete the classification model's files in model_cache
|
||||
model_dir = os.path.join(MODEL_CACHE_DIR, sanitized_name)
|
||||
if os.path.exists(model_dir):
|
||||
try:
|
||||
shutil.rmtree(model_dir)
|
||||
logger.info(f"Deleted classification model directory for {name}")
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to delete model directory for {name}: {e}")
|
||||
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": True,
|
||||
"message": f"Successfully deleted classification model {name}.",
|
||||
}
|
||||
),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic.json_schema import SkipJsonSchema
|
||||
|
||||
|
||||
class Extension(str, Enum):
|
||||
@ -22,6 +23,7 @@ class MediaLatestFrameQueryParams(BaseModel):
|
||||
zones: Optional[int] = None
|
||||
mask: Optional[int] = None
|
||||
motion: Optional[int] = None
|
||||
paths: Optional[int] = None
|
||||
regions: Optional[int] = None
|
||||
quality: Optional[int] = 70
|
||||
height: Optional[int] = None
|
||||
@ -51,3 +53,10 @@ class MediaMjpegFeedQueryParams(BaseModel):
|
||||
class MediaRecordingsSummaryQueryParams(BaseModel):
|
||||
timezone: str = "utc"
|
||||
cameras: Optional[str] = "all"
|
||||
|
||||
|
||||
class MediaRecordingsAvailabilityQueryParams(BaseModel):
|
||||
cameras: str = "all"
|
||||
before: Union[float, SkipJsonSchema[None]] = None
|
||||
after: Union[float, SkipJsonSchema[None]] = None
|
||||
scale: int = 30
|
||||
|
||||
@ -1,9 +1,13 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from frigate.events.types import RegenerateDescriptionEnum
|
||||
|
||||
|
||||
class RegenerateQueryParameters(BaseModel):
|
||||
source: Optional[RegenerateDescriptionEnum] = RegenerateDescriptionEnum.thumbnails
|
||||
force: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Force (re)generating the description even if GenAI is disabled for this camera.",
|
||||
)
|
||||
|
||||
@ -1,10 +1,12 @@
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AppConfigSetBody(BaseModel):
|
||||
requires_restart: int = 1
|
||||
update_topic: str | None = None
|
||||
config_data: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class AppPutPasswordBody(BaseModel):
|
||||
|
||||
@ -1,5 +1,31 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class RenameFaceBody(BaseModel):
|
||||
new_name: str
|
||||
new_name: str = Field(description="New name for the face")
|
||||
|
||||
|
||||
class AudioTranscriptionBody(BaseModel):
|
||||
event_id: str = Field(description="ID of the event to transcribe audio for")
|
||||
|
||||
|
||||
class DeleteFaceImagesBody(BaseModel):
|
||||
ids: List[str] = Field(
|
||||
description="List of image filenames to delete from the face folder"
|
||||
)
|
||||
|
||||
|
||||
class GenerateStateExamplesBody(BaseModel):
|
||||
model_name: str = Field(description="Name of the classification model")
|
||||
cameras: Dict[str, Tuple[float, float, float, float]] = Field(
|
||||
description="Dictionary mapping camera names to normalized crop coordinates in [x1, y1, x2, y2] format (values 0-1)"
|
||||
)
|
||||
|
||||
|
||||
class GenerateObjectExamplesBody(BaseModel):
|
||||
model_name: str = Field(description="Name of the classification model")
|
||||
label: str = Field(
|
||||
description="Object label to collect examples for (e.g., 'person', 'car')"
|
||||
)
|
||||
|
||||
@ -2,6 +2,8 @@ from typing import List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from frigate.config.classification import TriggerType
|
||||
|
||||
|
||||
class EventsSubLabelBody(BaseModel):
|
||||
subLabel: str = Field(title="Sub label", max_length=100)
|
||||
@ -45,3 +47,9 @@ class EventsDeleteBody(BaseModel):
|
||||
|
||||
class SubmitPlusBody(BaseModel):
|
||||
include_annotation: int = Field(default=1)
|
||||
|
||||
|
||||
class TriggerEmbeddingBody(BaseModel):
|
||||
type: TriggerType
|
||||
data: str
|
||||
threshold: float = Field(default=0.5, ge=0.0, le=1.0)
|
||||
|
||||
@ -4,3 +4,5 @@ from pydantic import BaseModel, conlist, constr
|
||||
class ReviewModifyMultipleBody(BaseModel):
|
||||
# List of string with at least one element and each element with at least one char
|
||||
ids: conlist(constr(min_length=1), min_length=1)
|
||||
# Whether to mark items as reviewed (True) or unreviewed (False)
|
||||
reviewed: bool = True
|
||||
|
||||
38
frigate/api/defs/response/classification_response.py
Normal file
38
frigate/api/defs/response/classification_response.py
Normal file
@ -0,0 +1,38 @@
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, RootModel
|
||||
|
||||
|
||||
class FacesResponse(RootModel[Dict[str, List[str]]]):
|
||||
"""Response model for the get_faces endpoint.
|
||||
|
||||
Returns a mapping of face names to lists of image filenames.
|
||||
Each face name corresponds to a directory in the faces folder,
|
||||
and the list contains the names of image files for that face.
|
||||
|
||||
Example:
|
||||
{
|
||||
"john_doe": ["face1.webp", "face2.jpg"],
|
||||
"jane_smith": ["face3.png"]
|
||||
}
|
||||
"""
|
||||
|
||||
root: Dict[str, List[str]] = Field(
|
||||
default_factory=dict,
|
||||
description="Dictionary mapping face names to lists of image filenames",
|
||||
)
|
||||
|
||||
|
||||
class FaceRecognitionResponse(BaseModel):
|
||||
"""Response model for face recognition endpoint.
|
||||
|
||||
Returns the result of attempting to recognize a face from an uploaded image.
|
||||
"""
|
||||
|
||||
success: bool = Field(description="Whether the face recognition was successful")
|
||||
score: Optional[float] = Field(
|
||||
default=None, description="Confidence score of the recognition (0-1)"
|
||||
)
|
||||
face_name: Optional[str] = Field(
|
||||
default=None, description="The recognized face name if successful"
|
||||
)
|
||||
30
frigate/api/defs/response/export_response.py
Normal file
30
frigate/api/defs/response/export_response.py
Normal file
@ -0,0 +1,30 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ExportModel(BaseModel):
|
||||
"""Model representing a single export."""
|
||||
|
||||
id: str = Field(description="Unique identifier for the export")
|
||||
camera: str = Field(description="Camera name associated with this export")
|
||||
name: str = Field(description="Friendly name of the export")
|
||||
date: float = Field(description="Unix timestamp when the export was created")
|
||||
video_path: str = Field(description="File path to the exported video")
|
||||
thumb_path: str = Field(description="File path to the export thumbnail")
|
||||
in_progress: bool = Field(
|
||||
description="Whether the export is currently being processed"
|
||||
)
|
||||
|
||||
|
||||
class StartExportResponse(BaseModel):
|
||||
"""Response model for starting an export."""
|
||||
|
||||
success: bool = Field(description="Whether the export was started successfully")
|
||||
message: str = Field(description="Status or error message")
|
||||
export_id: Optional[str] = Field(
|
||||
default=None, description="The export ID if successfully started"
|
||||
)
|
||||
|
||||
|
||||
ExportsResponse = List[ExportModel]
|
||||
17
frigate/api/defs/response/preview_response.py
Normal file
17
frigate/api/defs/response/preview_response.py
Normal file
@ -0,0 +1,17 @@
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class PreviewModel(BaseModel):
|
||||
"""Model representing a single preview clip."""
|
||||
|
||||
camera: str = Field(description="Camera name for this preview")
|
||||
src: str = Field(description="Path to the preview video file")
|
||||
type: str = Field(description="MIME type of the preview video (video/mp4)")
|
||||
start: float = Field(description="Unix timestamp when the preview starts")
|
||||
end: float = Field(description="Unix timestamp when the preview ends")
|
||||
|
||||
|
||||
PreviewsResponse = List[PreviewModel]
|
||||
PreviewFramesResponse = List[str]
|
||||
@ -3,6 +3,7 @@ from enum import Enum
|
||||
|
||||
class Tags(Enum):
|
||||
app = "App"
|
||||
camera = "Camera"
|
||||
preview = "Preview"
|
||||
logs = "Logs"
|
||||
media = "Media"
|
||||
@ -10,5 +11,5 @@ class Tags(Enum):
|
||||
review = "Review"
|
||||
export = "Export"
|
||||
events = "Events"
|
||||
classification = "classification"
|
||||
classification = "Classification"
|
||||
auth = "Auth"
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -4,6 +4,7 @@ import logging
|
||||
import random
|
||||
import string
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import psutil
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
@ -12,9 +13,19 @@ from pathvalidate import sanitize_filepath
|
||||
from peewee import DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.auth import require_role
|
||||
from frigate.api.auth import (
|
||||
get_allowed_cameras_for_filter,
|
||||
require_camera_access,
|
||||
require_role,
|
||||
)
|
||||
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
|
||||
from frigate.api.defs.request.export_rename_body import ExportRenameBody
|
||||
from frigate.api.defs.response.export_response import (
|
||||
ExportModel,
|
||||
ExportsResponse,
|
||||
StartExportResponse,
|
||||
)
|
||||
from frigate.api.defs.response.generic_response import GenericResponse
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.const import CLIPS_DIR, EXPORT_DIR
|
||||
from frigate.models import Export, Previews, Recordings
|
||||
@ -23,20 +34,43 @@ from frigate.record.export import (
|
||||
PlaybackSourceEnum,
|
||||
RecordingExporter,
|
||||
)
|
||||
from frigate.util.builtin import is_current_hour
|
||||
from frigate.util.time import is_current_hour
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(tags=[Tags.export])
|
||||
|
||||
|
||||
@router.get("/exports")
|
||||
def get_exports():
|
||||
exports = Export.select().order_by(Export.date.desc()).dicts().iterator()
|
||||
@router.get(
|
||||
"/exports",
|
||||
response_model=ExportsResponse,
|
||||
summary="Get exports",
|
||||
description="""Gets all exports from the database for cameras the user has access to.
|
||||
Returns a list of exports ordered by date (most recent first).""",
|
||||
)
|
||||
def get_exports(
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
exports = (
|
||||
Export.select()
|
||||
.where(Export.camera << allowed_cameras)
|
||||
.order_by(Export.date.desc())
|
||||
.dicts()
|
||||
.iterator()
|
||||
)
|
||||
return JSONResponse(content=[e for e in exports])
|
||||
|
||||
|
||||
@router.post("/export/{camera_name}/start/{start_time}/end/{end_time}")
|
||||
@router.post(
|
||||
"/export/{camera_name}/start/{start_time}/end/{end_time}",
|
||||
response_model=StartExportResponse,
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
summary="Start recording export",
|
||||
description="""Starts an export of a recording for the specified time range.
|
||||
The export can be from recordings or preview footage. Returns the export ID if
|
||||
successful, or an error message if the camera is invalid or no recordings/previews
|
||||
are found for the time range.""",
|
||||
)
|
||||
def export_recording(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
@ -140,11 +174,18 @@ def export_recording(
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/export/{event_id}/rename", dependencies=[Depends(require_role(["admin"]))]
|
||||
"/export/{event_id}/rename",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Rename export",
|
||||
description="""Renames an export.
|
||||
NOTE: This changes the friendly name of the export, not the filename.
|
||||
""",
|
||||
)
|
||||
def export_rename(event_id: str, body: ExportRenameBody):
|
||||
async def export_rename(event_id: str, body: ExportRenameBody, request: Request):
|
||||
try:
|
||||
export: Export = Export.get(Export.id == event_id)
|
||||
await require_camera_access(export.camera, request=request)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
@ -169,10 +210,16 @@ def export_rename(event_id: str, body: ExportRenameBody):
|
||||
)
|
||||
|
||||
|
||||
@router.delete("/export/{event_id}", dependencies=[Depends(require_role(["admin"]))])
|
||||
def export_delete(event_id: str):
|
||||
@router.delete(
|
||||
"/export/{event_id}",
|
||||
response_model=GenericResponse,
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Delete export",
|
||||
)
|
||||
async def export_delete(event_id: str, request: Request):
|
||||
try:
|
||||
export: Export = Export.get(Export.id == event_id)
|
||||
await require_camera_access(export.camera, request=request)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
@ -222,10 +269,18 @@ def export_delete(event_id: str):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/exports/{export_id}")
|
||||
def get_export(export_id: str):
|
||||
@router.get(
|
||||
"/exports/{export_id}",
|
||||
response_model=ExportModel,
|
||||
summary="Get a single export",
|
||||
description="""Gets a specific export by ID. The user must have access to the camera
|
||||
associated with the export.""",
|
||||
)
|
||||
async def get_export(export_id: str, request: Request):
|
||||
try:
|
||||
return JSONResponse(content=model_to_dict(Export.get(Export.id == export_id)))
|
||||
export = Export.get(Export.id == export_id)
|
||||
await require_camera_access(export.camera, request=request)
|
||||
return JSONResponse(content=model_to_dict(export))
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Export not found"},
|
||||
|
||||
@ -1,8 +1,10 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import JSONResponse
|
||||
from joserfc.jwk import OctKey
|
||||
from playhouse.sqliteq import SqliteQueueDatabase
|
||||
from slowapi import _rate_limit_exceeded_handler
|
||||
from slowapi.errors import RateLimitExceeded
|
||||
@ -13,6 +15,7 @@ from starlette_context.plugins import Plugin
|
||||
from frigate.api import app as main_app
|
||||
from frigate.api import (
|
||||
auth,
|
||||
camera,
|
||||
classification,
|
||||
event,
|
||||
export,
|
||||
@ -26,6 +29,7 @@ from frigate.comms.event_metadata_updater import (
|
||||
EventMetadataPublisher,
|
||||
)
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.config.camera.updater import CameraConfigUpdatePublisher
|
||||
from frigate.embeddings import EmbeddingsContext
|
||||
from frigate.ptz.onvif import OnvifController
|
||||
from frigate.stats.emitter import StatsEmitter
|
||||
@ -57,6 +61,7 @@ def create_fastapi_app(
|
||||
onvif: OnvifController,
|
||||
stats_emitter: StatsEmitter,
|
||||
event_metadata_updater: EventMetadataPublisher,
|
||||
config_publisher: CameraConfigUpdatePublisher,
|
||||
):
|
||||
logger.info("Starting FastAPI app")
|
||||
app = FastAPI(
|
||||
@ -110,6 +115,7 @@ def create_fastapi_app(
|
||||
# Routes
|
||||
# Order of include_router matters: https://fastapi.tiangolo.com/tutorial/path-params/#order-matters
|
||||
app.include_router(auth.router)
|
||||
app.include_router(camera.router)
|
||||
app.include_router(classification.router)
|
||||
app.include_router(review.router)
|
||||
app.include_router(main_app.router)
|
||||
@ -127,6 +133,27 @@ def create_fastapi_app(
|
||||
app.onvif = onvif
|
||||
app.stats_emitter = stats_emitter
|
||||
app.event_metadata_updater = event_metadata_updater
|
||||
app.jwt_token = get_jwt_secret() if frigate_config.auth.enabled else None
|
||||
app.config_publisher = config_publisher
|
||||
|
||||
if frigate_config.auth.enabled:
|
||||
secret = get_jwt_secret()
|
||||
key_bytes = None
|
||||
if isinstance(secret, str):
|
||||
# If the secret looks like hex (e.g., generated by secrets.token_hex), use raw bytes
|
||||
if len(secret) % 2 == 0 and re.fullmatch(r"[0-9a-fA-F]+", secret or ""):
|
||||
try:
|
||||
key_bytes = bytes.fromhex(secret)
|
||||
except ValueError:
|
||||
key_bytes = secret.encode("utf-8")
|
||||
else:
|
||||
key_bytes = secret.encode("utf-8")
|
||||
elif isinstance(secret, (bytes, bytearray)):
|
||||
key_bytes = bytes(secret)
|
||||
else:
|
||||
key_bytes = str(secret).encode("utf-8")
|
||||
|
||||
app.jwt_token = OctKey.import_key(key_bytes)
|
||||
else:
|
||||
app.jwt_token = None
|
||||
|
||||
return app
|
||||
|
||||
@ -8,25 +8,27 @@ import os
|
||||
import subprocess as sp
|
||||
import time
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from functools import reduce
|
||||
from pathlib import Path as FilePath
|
||||
from typing import Any
|
||||
from typing import Any, List
|
||||
from urllib.parse import unquote
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pytz
|
||||
from fastapi import APIRouter, Path, Query, Request, Response
|
||||
from fastapi.params import Depends
|
||||
from fastapi import APIRouter, Depends, Path, Query, Request, Response
|
||||
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
|
||||
from pathvalidate import sanitize_filename
|
||||
from peewee import DoesNotExist, fn
|
||||
from peewee import DoesNotExist, fn, operator
|
||||
from tzlocal import get_localzone_name
|
||||
|
||||
from frigate.api.auth import get_allowed_cameras_for_filter, require_camera_access
|
||||
from frigate.api.defs.query.media_query_parameters import (
|
||||
Extension,
|
||||
MediaEventsSnapshotQueryParams,
|
||||
MediaLatestFrameQueryParams,
|
||||
MediaMjpegFeedQueryParams,
|
||||
MediaRecordingsAvailabilityQueryParams,
|
||||
MediaRecordingsSummaryQueryParams,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
@ -42,18 +44,17 @@ from frigate.const import (
|
||||
)
|
||||
from frigate.models import Event, Previews, Recordings, Regions, ReviewSegment
|
||||
from frigate.track.object_processing import TrackedObjectProcessor
|
||||
from frigate.util.builtin import get_tz_modifiers
|
||||
from frigate.util.file import get_event_thumbnail_bytes
|
||||
from frigate.util.image import get_image_from_recording
|
||||
from frigate.util.path import get_event_thumbnail_bytes
|
||||
from frigate.util.time import get_dst_transitions
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
router = APIRouter(tags=[Tags.media])
|
||||
|
||||
|
||||
@router.get("/{camera_name}")
|
||||
def mjpeg_feed(
|
||||
@router.get("/{camera_name}", dependencies=[Depends(require_camera_access)])
|
||||
async def mjpeg_feed(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
params: MediaMjpegFeedQueryParams = Depends(),
|
||||
@ -109,7 +110,7 @@ def imagestream(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/ptz/info")
|
||||
@router.get("/{camera_name}/ptz/info", dependencies=[Depends(require_camera_access)])
|
||||
async def camera_ptz_info(request: Request, camera_name: str):
|
||||
if camera_name in request.app.frigate_config.cameras:
|
||||
# Schedule get_camera_info in the OnvifController's event loop
|
||||
@ -125,8 +126,10 @@ async def camera_ptz_info(request: Request, camera_name: str):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/latest.{extension}")
|
||||
def latest_frame(
|
||||
@router.get(
|
||||
"/{camera_name}/latest.{extension}", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
async def latest_frame(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
extension: Extension,
|
||||
@ -139,6 +142,7 @@ def latest_frame(
|
||||
"zones": params.zones,
|
||||
"mask": params.mask,
|
||||
"motion_boxes": params.motion,
|
||||
"paths": params.paths,
|
||||
"regions": params.regions,
|
||||
}
|
||||
quality = params.quality
|
||||
@ -233,8 +237,11 @@ def latest_frame(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/recordings/{frame_time}/snapshot.{format}")
|
||||
def get_snapshot_from_recording(
|
||||
@router.get(
|
||||
"/{camera_name}/recordings/{frame_time}/snapshot.{format}",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
)
|
||||
async def get_snapshot_from_recording(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
frame_time: float,
|
||||
@ -320,8 +327,10 @@ def get_snapshot_from_recording(
|
||||
)
|
||||
|
||||
|
||||
@router.post("/{camera_name}/plus/{frame_time}")
|
||||
def submit_recording_snapshot_to_plus(
|
||||
@router.post(
|
||||
"/{camera_name}/plus/{frame_time}", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
async def submit_recording_snapshot_to_plus(
|
||||
request: Request, camera_name: str, frame_time: str
|
||||
):
|
||||
if camera_name not in request.app.frigate_config.cameras:
|
||||
@ -409,111 +418,195 @@ def get_recordings_storage_usage(request: Request):
|
||||
|
||||
|
||||
@router.get("/recordings/summary")
|
||||
def all_recordings_summary(params: MediaRecordingsSummaryQueryParams = Depends()):
|
||||
def all_recordings_summary(
|
||||
request: Request,
|
||||
params: MediaRecordingsSummaryQueryParams = Depends(),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
"""Returns true/false by day indicating if recordings exist"""
|
||||
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
|
||||
|
||||
cameras = params.cameras
|
||||
if cameras != "all":
|
||||
requested = set(unquote(cameras).split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content={})
|
||||
camera_list = list(filtered)
|
||||
else:
|
||||
camera_list = allowed_cameras
|
||||
|
||||
query = (
|
||||
time_range_query = (
|
||||
Recordings.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
Recordings.start_time + seconds_offset,
|
||||
"unixepoch",
|
||||
hour_modifier,
|
||||
minute_modifier,
|
||||
),
|
||||
).alias("day")
|
||||
fn.MIN(Recordings.start_time).alias("min_time"),
|
||||
fn.MAX(Recordings.start_time).alias("max_time"),
|
||||
)
|
||||
.group_by(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
Recordings.start_time + seconds_offset,
|
||||
"unixepoch",
|
||||
hour_modifier,
|
||||
minute_modifier,
|
||||
),
|
||||
)
|
||||
)
|
||||
.order_by(Recordings.start_time.desc())
|
||||
.where(Recordings.camera << camera_list)
|
||||
.dicts()
|
||||
.get()
|
||||
)
|
||||
|
||||
if cameras != "all":
|
||||
query = query.where(Recordings.camera << cameras.split(","))
|
||||
min_time = time_range_query.get("min_time")
|
||||
max_time = time_range_query.get("max_time")
|
||||
|
||||
recording_days = query.namedtuples()
|
||||
days = {day.day: True for day in recording_days}
|
||||
if min_time is None or max_time is None:
|
||||
return JSONResponse(content={})
|
||||
|
||||
return JSONResponse(content=days)
|
||||
dst_periods = get_dst_transitions(params.timezone, min_time, max_time)
|
||||
|
||||
days: dict[str, bool] = {}
|
||||
|
||||
for period_start, period_end, period_offset in dst_periods:
|
||||
hours_offset = int(period_offset / 60 / 60)
|
||||
minutes_offset = int(period_offset / 60 - hours_offset * 60)
|
||||
period_hour_modifier = f"{hours_offset} hour"
|
||||
period_minute_modifier = f"{minutes_offset} minute"
|
||||
|
||||
period_query = (
|
||||
Recordings.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
Recordings.start_time,
|
||||
"unixepoch",
|
||||
period_hour_modifier,
|
||||
period_minute_modifier,
|
||||
),
|
||||
).alias("day")
|
||||
)
|
||||
.where(
|
||||
(Recordings.camera << camera_list)
|
||||
& (Recordings.end_time >= period_start)
|
||||
& (Recordings.start_time <= period_end)
|
||||
)
|
||||
.group_by(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
Recordings.start_time,
|
||||
"unixepoch",
|
||||
period_hour_modifier,
|
||||
period_minute_modifier,
|
||||
),
|
||||
)
|
||||
)
|
||||
.order_by(Recordings.start_time.desc())
|
||||
.namedtuples()
|
||||
)
|
||||
|
||||
for g in period_query:
|
||||
days[g.day] = True
|
||||
|
||||
return JSONResponse(content=dict(sorted(days.items())))
|
||||
|
||||
|
||||
@router.get("/{camera_name}/recordings/summary")
|
||||
def recordings_summary(camera_name: str, timezone: str = "utc"):
|
||||
@router.get(
|
||||
"/{camera_name}/recordings/summary", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
async def recordings_summary(camera_name: str, timezone: str = "utc"):
|
||||
"""Returns hourly summary for recordings of given camera"""
|
||||
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(timezone)
|
||||
recording_groups = (
|
||||
|
||||
time_range_query = (
|
||||
Recordings.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d %H",
|
||||
fn.datetime(
|
||||
Recordings.start_time, "unixepoch", hour_modifier, minute_modifier
|
||||
),
|
||||
).alias("hour"),
|
||||
fn.SUM(Recordings.duration).alias("duration"),
|
||||
fn.SUM(Recordings.motion).alias("motion"),
|
||||
fn.SUM(Recordings.objects).alias("objects"),
|
||||
fn.MIN(Recordings.start_time).alias("min_time"),
|
||||
fn.MAX(Recordings.start_time).alias("max_time"),
|
||||
)
|
||||
.where(Recordings.camera == camera_name)
|
||||
.group_by((Recordings.start_time + seconds_offset).cast("int") / 3600)
|
||||
.order_by(Recordings.start_time.desc())
|
||||
.namedtuples()
|
||||
.dicts()
|
||||
.get()
|
||||
)
|
||||
|
||||
event_groups = (
|
||||
Event.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d %H",
|
||||
fn.datetime(
|
||||
Event.start_time, "unixepoch", hour_modifier, minute_modifier
|
||||
),
|
||||
).alias("hour"),
|
||||
fn.COUNT(Event.id).alias("count"),
|
||||
min_time = time_range_query.get("min_time")
|
||||
max_time = time_range_query.get("max_time")
|
||||
|
||||
days: dict[str, dict] = {}
|
||||
|
||||
if min_time is None or max_time is None:
|
||||
return JSONResponse(content=list(days.values()))
|
||||
|
||||
dst_periods = get_dst_transitions(timezone, min_time, max_time)
|
||||
|
||||
for period_start, period_end, period_offset in dst_periods:
|
||||
hours_offset = int(period_offset / 60 / 60)
|
||||
minutes_offset = int(period_offset / 60 - hours_offset * 60)
|
||||
period_hour_modifier = f"{hours_offset} hour"
|
||||
period_minute_modifier = f"{minutes_offset} minute"
|
||||
|
||||
recording_groups = (
|
||||
Recordings.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d %H",
|
||||
fn.datetime(
|
||||
Recordings.start_time,
|
||||
"unixepoch",
|
||||
period_hour_modifier,
|
||||
period_minute_modifier,
|
||||
),
|
||||
).alias("hour"),
|
||||
fn.SUM(Recordings.duration).alias("duration"),
|
||||
fn.SUM(Recordings.motion).alias("motion"),
|
||||
fn.SUM(Recordings.objects).alias("objects"),
|
||||
)
|
||||
.where(
|
||||
(Recordings.camera == camera_name)
|
||||
& (Recordings.end_time >= period_start)
|
||||
& (Recordings.start_time <= period_end)
|
||||
)
|
||||
.group_by((Recordings.start_time + period_offset).cast("int") / 3600)
|
||||
.order_by(Recordings.start_time.desc())
|
||||
.namedtuples()
|
||||
)
|
||||
.where(Event.camera == camera_name, Event.has_clip)
|
||||
.group_by((Event.start_time + seconds_offset).cast("int") / 3600)
|
||||
.namedtuples()
|
||||
)
|
||||
|
||||
event_map = {g.hour: g.count for g in event_groups}
|
||||
event_groups = (
|
||||
Event.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d %H",
|
||||
fn.datetime(
|
||||
Event.start_time,
|
||||
"unixepoch",
|
||||
period_hour_modifier,
|
||||
period_minute_modifier,
|
||||
),
|
||||
).alias("hour"),
|
||||
fn.COUNT(Event.id).alias("count"),
|
||||
)
|
||||
.where(Event.camera == camera_name, Event.has_clip)
|
||||
.where(
|
||||
(Event.start_time >= period_start) & (Event.start_time <= period_end)
|
||||
)
|
||||
.group_by((Event.start_time + period_offset).cast("int") / 3600)
|
||||
.namedtuples()
|
||||
)
|
||||
|
||||
days = {}
|
||||
event_map = {g.hour: g.count for g in event_groups}
|
||||
|
||||
for recording_group in recording_groups:
|
||||
parts = recording_group.hour.split()
|
||||
hour = parts[1]
|
||||
day = parts[0]
|
||||
events_count = event_map.get(recording_group.hour, 0)
|
||||
hour_data = {
|
||||
"hour": hour,
|
||||
"events": events_count,
|
||||
"motion": recording_group.motion,
|
||||
"objects": recording_group.objects,
|
||||
"duration": round(recording_group.duration),
|
||||
}
|
||||
if day not in days:
|
||||
days[day] = {"events": events_count, "hours": [hour_data], "day": day}
|
||||
else:
|
||||
days[day]["events"] += events_count
|
||||
days[day]["hours"].append(hour_data)
|
||||
for recording_group in recording_groups:
|
||||
parts = recording_group.hour.split()
|
||||
hour = parts[1]
|
||||
day = parts[0]
|
||||
events_count = event_map.get(recording_group.hour, 0)
|
||||
hour_data = {
|
||||
"hour": hour,
|
||||
"events": events_count,
|
||||
"motion": recording_group.motion,
|
||||
"objects": recording_group.objects,
|
||||
"duration": round(recording_group.duration),
|
||||
}
|
||||
if day in days:
|
||||
# merge counts if already present (edge-case at DST boundary)
|
||||
days[day]["events"] += events_count or 0
|
||||
days[day]["hours"].append(hour_data)
|
||||
else:
|
||||
days[day] = {
|
||||
"events": events_count or 0,
|
||||
"hours": [hour_data],
|
||||
"day": day,
|
||||
}
|
||||
|
||||
return JSONResponse(content=list(days.values()))
|
||||
|
||||
|
||||
@router.get("/{camera_name}/recordings")
|
||||
def recordings(
|
||||
@router.get("/{camera_name}/recordings", dependencies=[Depends(require_camera_access)])
|
||||
async def recordings(
|
||||
camera_name: str,
|
||||
after: float = (datetime.now() - timedelta(hours=1)).timestamp(),
|
||||
before: float = datetime.now().timestamp(),
|
||||
@ -542,11 +635,93 @@ def recordings(
|
||||
return JSONResponse(content=list(recordings))
|
||||
|
||||
|
||||
@router.get("/recordings/unavailable", response_model=list[dict])
|
||||
async def no_recordings(
|
||||
request: Request,
|
||||
params: MediaRecordingsAvailabilityQueryParams = Depends(),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
"""Get time ranges with no recordings."""
|
||||
cameras = params.cameras
|
||||
if cameras != "all":
|
||||
requested = set(unquote(cameras).split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content=[])
|
||||
cameras = ",".join(filtered)
|
||||
else:
|
||||
cameras = allowed_cameras
|
||||
|
||||
before = params.before or datetime.datetime.now().timestamp()
|
||||
after = (
|
||||
params.after
|
||||
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
|
||||
)
|
||||
scale = params.scale
|
||||
|
||||
clauses = [(Recordings.end_time >= after) & (Recordings.start_time <= before)]
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((Recordings.camera << camera_list))
|
||||
else:
|
||||
camera_list = allowed_cameras
|
||||
|
||||
# Get recording start times
|
||||
data: list[Recordings] = (
|
||||
Recordings.select(Recordings.start_time, Recordings.end_time)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.order_by(Recordings.start_time.asc())
|
||||
.dicts()
|
||||
.iterator()
|
||||
)
|
||||
|
||||
# Convert recordings to list of (start, end) tuples
|
||||
recordings = [(r["start_time"], r["end_time"]) for r in data]
|
||||
|
||||
# Iterate through time segments and check if each has any recording
|
||||
no_recording_segments = []
|
||||
current = after
|
||||
current_gap_start = None
|
||||
|
||||
while current < before:
|
||||
segment_end = min(current + scale, before)
|
||||
|
||||
# Check if this segment overlaps with any recording
|
||||
has_recording = any(
|
||||
rec_start < segment_end and rec_end > current
|
||||
for rec_start, rec_end in recordings
|
||||
)
|
||||
|
||||
if not has_recording:
|
||||
# This segment has no recordings
|
||||
if current_gap_start is None:
|
||||
current_gap_start = current # Start a new gap
|
||||
else:
|
||||
# This segment has recordings
|
||||
if current_gap_start is not None:
|
||||
# End the current gap and append it
|
||||
no_recording_segments.append(
|
||||
{"start_time": int(current_gap_start), "end_time": int(current)}
|
||||
)
|
||||
current_gap_start = None
|
||||
|
||||
current = segment_end
|
||||
|
||||
# Append the last gap if it exists
|
||||
if current_gap_start is not None:
|
||||
no_recording_segments.append(
|
||||
{"start_time": int(current_gap_start), "end_time": int(before)}
|
||||
)
|
||||
|
||||
return JSONResponse(content=no_recording_segments)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/{camera_name}/start/{start_ts}/end/{end_ts}/clip.mp4",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
description="For iOS devices, use the master.m3u8 HLS link instead of clip.mp4. Safari does not reliably process progressive mp4 files.",
|
||||
)
|
||||
def recording_clip(
|
||||
async def recording_clip(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
start_ts: float,
|
||||
@ -642,9 +817,10 @@ def recording_clip(
|
||||
|
||||
@router.get(
|
||||
"/vod/{camera_name}/start/{start_ts}/end/{end_ts}",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
description="Returns an HLS playlist for the specified timestamp-range on the specified camera. Append /master.m3u8 or /index.m3u8 for HLS playback.",
|
||||
)
|
||||
def vod_ts(camera_name: str, start_ts: float, end_ts: float):
|
||||
async def vod_ts(camera_name: str, start_ts: float, end_ts: float):
|
||||
recordings = (
|
||||
Recordings.select(
|
||||
Recordings.path,
|
||||
@ -719,20 +895,24 @@ def vod_ts(camera_name: str, start_ts: float, end_ts: float):
|
||||
|
||||
@router.get(
|
||||
"/vod/{year_month}/{day}/{hour}/{camera_name}",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
description="Returns an HLS playlist for the specified date-time on the specified camera. Append /master.m3u8 or /index.m3u8 for HLS playback.",
|
||||
)
|
||||
def vod_hour_no_timezone(year_month: str, day: int, hour: int, camera_name: str):
|
||||
async def vod_hour_no_timezone(year_month: str, day: int, hour: int, camera_name: str):
|
||||
"""VOD for specific hour. Uses the default timezone (UTC)."""
|
||||
return vod_hour(
|
||||
return await vod_hour(
|
||||
year_month, day, hour, camera_name, get_localzone_name().replace("/", ",")
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/vod/{year_month}/{day}/{hour}/{camera_name}/{tz_name}",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
description="Returns an HLS playlist for the specified date-time (with timezone) on the specified camera. Append /master.m3u8 or /index.m3u8 for HLS playback.",
|
||||
)
|
||||
def vod_hour(year_month: str, day: int, hour: int, camera_name: str, tz_name: str):
|
||||
async def vod_hour(
|
||||
year_month: str, day: int, hour: int, camera_name: str, tz_name: str
|
||||
):
|
||||
parts = year_month.split("-")
|
||||
start_date = (
|
||||
datetime(int(parts[0]), int(parts[1]), day, hour, tzinfo=timezone.utc)
|
||||
@ -742,14 +922,15 @@ def vod_hour(year_month: str, day: int, hour: int, camera_name: str, tz_name: st
|
||||
start_ts = start_date.timestamp()
|
||||
end_ts = end_date.timestamp()
|
||||
|
||||
return vod_ts(camera_name, start_ts, end_ts)
|
||||
return await vod_ts(camera_name, start_ts, end_ts)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/vod/event/{event_id}",
|
||||
description="Returns an HLS playlist for the specified object. Append /master.m3u8 or /index.m3u8 for HLS playback.",
|
||||
)
|
||||
def vod_event(
|
||||
async def vod_event(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
padding: int = Query(0, description="Padding to apply to the vod."),
|
||||
):
|
||||
@ -765,22 +946,14 @@ def vod_event(
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
if not event.has_clip:
|
||||
logger.error(f"Event does not have recordings: {event_id}")
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Recordings not available.",
|
||||
},
|
||||
status_code=404,
|
||||
)
|
||||
await require_camera_access(event.camera, request=request)
|
||||
|
||||
end_ts = (
|
||||
datetime.now().timestamp()
|
||||
if event.end_time is None
|
||||
else (event.end_time + padding)
|
||||
)
|
||||
vod_response = vod_ts(event.camera, event.start_time - padding, end_ts)
|
||||
vod_response = await vod_ts(event.camera, event.start_time - padding, end_ts)
|
||||
|
||||
# If the recordings are not found and the event started more than 5 minutes ago, set has_clip to false
|
||||
if (
|
||||
@ -798,7 +971,7 @@ def vod_event(
|
||||
"/events/{event_id}/snapshot.jpg",
|
||||
description="Returns a snapshot image for the specified object id. NOTE: The query params only take affect while the event is in-progress. Once the event has ended the snapshot configuration is used.",
|
||||
)
|
||||
def event_snapshot(
|
||||
async def event_snapshot(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
params: MediaEventsSnapshotQueryParams = Depends(),
|
||||
@ -808,6 +981,7 @@ def event_snapshot(
|
||||
try:
|
||||
event = Event.get(Event.id == event_id, Event.end_time != None)
|
||||
event_complete = True
|
||||
await require_camera_access(event.camera, request=request)
|
||||
if not event.has_snapshot:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Snapshot not available"},
|
||||
@ -836,6 +1010,7 @@ def event_snapshot(
|
||||
height=params.height,
|
||||
quality=params.quality,
|
||||
)
|
||||
await require_camera_access(camera_state.name, request=request)
|
||||
except Exception:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Ongoing event not found"},
|
||||
@ -869,7 +1044,7 @@ def event_snapshot(
|
||||
|
||||
|
||||
@router.get("/events/{event_id}/thumbnail.{extension}")
|
||||
def event_thumbnail(
|
||||
async def event_thumbnail(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
extension: Extension,
|
||||
@ -882,6 +1057,7 @@ def event_thumbnail(
|
||||
event_complete = False
|
||||
try:
|
||||
event: Event = Event.get(Event.id == event_id)
|
||||
await require_camera_access(event.camera, request=request)
|
||||
if event.end_time is not None:
|
||||
event_complete = True
|
||||
|
||||
@ -944,7 +1120,7 @@ def event_thumbnail(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/grid.jpg")
|
||||
@router.get("/{camera_name}/grid.jpg", dependencies=[Depends(require_camera_access)])
|
||||
def grid_snapshot(
|
||||
request: Request, camera_name: str, color: str = "green", font_scale: float = 0.5
|
||||
):
|
||||
@ -1065,9 +1241,9 @@ def grid_snapshot(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/events/{event_id}/snapshot-clean.png")
|
||||
@router.get("/events/{event_id}/snapshot-clean.webp")
|
||||
def event_snapshot_clean(request: Request, event_id: str, download: bool = False):
|
||||
png_bytes = None
|
||||
webp_bytes = None
|
||||
try:
|
||||
event = Event.get(Event.id == event_id)
|
||||
snapshot_config = request.app.frigate_config.cameras[event.camera].snapshots
|
||||
@ -1089,7 +1265,7 @@ def event_snapshot_clean(request: Request, event_id: str, download: bool = False
|
||||
if event_id in camera_state.tracked_objects:
|
||||
tracked_obj = camera_state.tracked_objects.get(event_id)
|
||||
if tracked_obj is not None:
|
||||
png_bytes = tracked_obj.get_clean_png()
|
||||
webp_bytes = tracked_obj.get_clean_webp()
|
||||
break
|
||||
except Exception:
|
||||
return JSONResponse(
|
||||
@ -1105,12 +1281,56 @@ def event_snapshot_clean(request: Request, event_id: str, download: bool = False
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Event not found"}, status_code=404
|
||||
)
|
||||
if png_bytes is None:
|
||||
if webp_bytes is None:
|
||||
try:
|
||||
clean_snapshot_path = os.path.join(
|
||||
# webp
|
||||
clean_snapshot_path_webp = os.path.join(
|
||||
CLIPS_DIR, f"{event.camera}-{event.id}-clean.webp"
|
||||
)
|
||||
# png (legacy)
|
||||
clean_snapshot_path_png = os.path.join(
|
||||
CLIPS_DIR, f"{event.camera}-{event.id}-clean.png"
|
||||
)
|
||||
if not os.path.exists(clean_snapshot_path):
|
||||
|
||||
if os.path.exists(clean_snapshot_path_webp):
|
||||
with open(clean_snapshot_path_webp, "rb") as image_file:
|
||||
webp_bytes = image_file.read()
|
||||
elif os.path.exists(clean_snapshot_path_png):
|
||||
# convert png to webp and save for future use
|
||||
png_image = cv2.imread(clean_snapshot_path_png, cv2.IMREAD_UNCHANGED)
|
||||
if png_image is None:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Invalid png snapshot",
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
ret, webp_data = cv2.imencode(
|
||||
".webp", png_image, [int(cv2.IMWRITE_WEBP_QUALITY), 60]
|
||||
)
|
||||
if not ret:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Unable to convert png to webp",
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
webp_bytes = webp_data.tobytes()
|
||||
|
||||
# save the converted webp for future requests
|
||||
try:
|
||||
with open(clean_snapshot_path_webp, "wb") as f:
|
||||
f.write(webp_bytes)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to save converted webp for event {event.id}: {e}"
|
||||
)
|
||||
# continue since we now have the data to return
|
||||
else:
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
@ -1118,39 +1338,35 @@ def event_snapshot_clean(request: Request, event_id: str, download: bool = False
|
||||
},
|
||||
status_code=404,
|
||||
)
|
||||
with open(
|
||||
os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}-clean.png"), "rb"
|
||||
) as image_file:
|
||||
png_bytes = image_file.read()
|
||||
except Exception:
|
||||
logger.error(f"Unable to load clean png for event: {event.id}")
|
||||
logger.error(f"Unable to load clean snapshot for event: {event.id}")
|
||||
return JSONResponse(
|
||||
content={
|
||||
"success": False,
|
||||
"message": "Unable to load clean png for event",
|
||||
"message": "Unable to load clean snapshot for event",
|
||||
},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
headers = {
|
||||
"Content-Type": "image/png",
|
||||
"Content-Type": "image/webp",
|
||||
"Cache-Control": "private, max-age=31536000",
|
||||
}
|
||||
|
||||
if download:
|
||||
headers["Content-Disposition"] = (
|
||||
f"attachment; filename=snapshot-{event_id}-clean.png"
|
||||
f"attachment; filename=snapshot-{event_id}-clean.webp"
|
||||
)
|
||||
|
||||
return Response(
|
||||
png_bytes,
|
||||
media_type="image/png",
|
||||
webp_bytes,
|
||||
media_type="image/webp",
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/events/{event_id}/clip.mp4")
|
||||
def event_clip(
|
||||
async def event_clip(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
padding: int = Query(0, description="Padding to apply to clip."),
|
||||
@ -1172,7 +1388,9 @@ def event_clip(
|
||||
if event.end_time is None
|
||||
else event.end_time + padding
|
||||
)
|
||||
return recording_clip(request, event.camera, event.start_time - padding, end_ts)
|
||||
return await recording_clip(
|
||||
request, event.camera, event.start_time - padding, end_ts
|
||||
)
|
||||
|
||||
|
||||
@router.get("/events/{event_id}/preview.gif")
|
||||
@ -1191,7 +1409,10 @@ def event_preview(request: Request, event_id: str):
|
||||
return preview_gif(request, event.camera, start_ts, end_ts)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/start/{start_ts}/end/{end_ts}/preview.gif")
|
||||
@router.get(
|
||||
"/{camera_name}/start/{start_ts}/end/{end_ts}/preview.gif",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
)
|
||||
def preview_gif(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
@ -1347,7 +1568,10 @@ def preview_gif(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/start/{start_ts}/end/{end_ts}/preview.mp4")
|
||||
@router.get(
|
||||
"/{camera_name}/start/{start_ts}/end/{end_ts}/preview.mp4",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
)
|
||||
def preview_mp4(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
@ -1587,9 +1811,14 @@ def preview_thumbnail(file_name: str):
|
||||
####################### dynamic routes ###########################
|
||||
|
||||
|
||||
@router.get("/{camera_name}/{label}/best.jpg")
|
||||
@router.get("/{camera_name}/{label}/thumbnail.jpg")
|
||||
def label_thumbnail(request: Request, camera_name: str, label: str):
|
||||
@router.get(
|
||||
"/{camera_name}/{label}/best.jpg", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
@router.get(
|
||||
"/{camera_name}/{label}/thumbnail.jpg",
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
)
|
||||
async def label_thumbnail(request: Request, camera_name: str, label: str):
|
||||
label = unquote(label)
|
||||
event_query = Event.select(fn.MAX(Event.id)).where(Event.camera == camera_name)
|
||||
if label != "any":
|
||||
@ -1598,7 +1827,7 @@ def label_thumbnail(request: Request, camera_name: str, label: str):
|
||||
try:
|
||||
event_id = event_query.scalar()
|
||||
|
||||
return event_thumbnail(request, event_id, Extension.jpg, 60)
|
||||
return await event_thumbnail(request, event_id, Extension.jpg, 60)
|
||||
except DoesNotExist:
|
||||
frame = np.zeros((175, 175, 3), np.uint8)
|
||||
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
|
||||
@ -1610,8 +1839,10 @@ def label_thumbnail(request: Request, camera_name: str, label: str):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/{label}/clip.mp4")
|
||||
def label_clip(request: Request, camera_name: str, label: str):
|
||||
@router.get(
|
||||
"/{camera_name}/{label}/clip.mp4", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
async def label_clip(request: Request, camera_name: str, label: str):
|
||||
label = unquote(label)
|
||||
event_query = Event.select(fn.MAX(Event.id)).where(
|
||||
Event.camera == camera_name, Event.has_clip == True
|
||||
@ -1622,15 +1853,17 @@ def label_clip(request: Request, camera_name: str, label: str):
|
||||
try:
|
||||
event = event_query.get()
|
||||
|
||||
return event_clip(request, event.id)
|
||||
return await event_clip(request, event.id)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Event not found"}, status_code=404
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{camera_name}/{label}/snapshot.jpg")
|
||||
def label_snapshot(request: Request, camera_name: str, label: str):
|
||||
@router.get(
|
||||
"/{camera_name}/{label}/snapshot.jpg", dependencies=[Depends(require_camera_access)]
|
||||
)
|
||||
async def label_snapshot(request: Request, camera_name: str, label: str):
|
||||
"""Returns the snapshot image from the latest event for the given camera and label combo"""
|
||||
label = unquote(label)
|
||||
if label == "any":
|
||||
@ -1651,7 +1884,7 @@ def label_snapshot(request: Request, camera_name: str, label: str):
|
||||
|
||||
try:
|
||||
event: Event = event_query.get()
|
||||
return event_snapshot(request, event.id, MediaEventsSnapshotQueryParams())
|
||||
return await event_snapshot(request, event.id, MediaEventsSnapshotQueryParams())
|
||||
except DoesNotExist:
|
||||
frame = np.zeros((720, 1280, 3), np.uint8)
|
||||
_, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
|
||||
|
||||
@ -19,7 +19,13 @@ logger = logging.getLogger(__name__)
|
||||
router = APIRouter(tags=[Tags.notifications])
|
||||
|
||||
|
||||
@router.get("/notifications/pubkey")
|
||||
@router.get(
|
||||
"/notifications/pubkey",
|
||||
summary="Get VAPID public key",
|
||||
description="""Gets the VAPID public key for the notifications.
|
||||
Returns the public key or an error if notifications are not enabled.
|
||||
""",
|
||||
)
|
||||
def get_vapid_pub_key(request: Request):
|
||||
config = request.app.frigate_config
|
||||
notifications_enabled = config.notifications.enabled
|
||||
@ -39,7 +45,13 @@ def get_vapid_pub_key(request: Request):
|
||||
return JSONResponse(content=utils.b64urlencode(raw_pub), status_code=200)
|
||||
|
||||
|
||||
@router.post("/notifications/register")
|
||||
@router.post(
|
||||
"/notifications/register",
|
||||
summary="Register notifications",
|
||||
description="""Registers a notifications subscription.
|
||||
Returns a success message or an error if the subscription is not provided.
|
||||
""",
|
||||
)
|
||||
def register_notifications(request: Request, body: dict = None):
|
||||
if request.app.frigate_config.auth.enabled:
|
||||
# FIXME: For FastAPI the remote-user is not being populated
|
||||
|
||||
@ -5,9 +5,14 @@ import os
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import pytz
|
||||
from fastapi import APIRouter
|
||||
from fastapi import APIRouter, Depends
|
||||
from fastapi.responses import JSONResponse
|
||||
|
||||
from frigate.api.auth import require_camera_access
|
||||
from frigate.api.defs.response.preview_response import (
|
||||
PreviewFramesResponse,
|
||||
PreviewsResponse,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.const import BASE_DIR, CACHE_DIR, PREVIEW_FRAME_TYPE
|
||||
from frigate.models import Previews
|
||||
@ -18,7 +23,16 @@ logger = logging.getLogger(__name__)
|
||||
router = APIRouter(tags=[Tags.preview])
|
||||
|
||||
|
||||
@router.get("/preview/{camera_name}/start/{start_ts}/end/{end_ts}")
|
||||
@router.get(
|
||||
"/preview/{camera_name}/start/{start_ts}/end/{end_ts}",
|
||||
response_model=PreviewsResponse,
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
summary="Get preview clips for time range",
|
||||
description="""Gets all preview clips for a specified camera and time range.
|
||||
Returns a list of preview video clips that overlap with the requested time period,
|
||||
ordered by start time. Use camera_name='all' to get previews from all cameras.
|
||||
Returns an error if no previews are found.""",
|
||||
)
|
||||
def preview_ts(camera_name: str, start_ts: float, end_ts: float):
|
||||
"""Get all mp4 previews relevant for time period."""
|
||||
if camera_name != "all":
|
||||
@ -71,7 +85,16 @@ def preview_ts(camera_name: str, start_ts: float, end_ts: float):
|
||||
return JSONResponse(content=clips, status_code=200)
|
||||
|
||||
|
||||
@router.get("/preview/{year_month}/{day}/{hour}/{camera_name}/{tz_name}")
|
||||
@router.get(
|
||||
"/preview/{year_month}/{day}/{hour}/{camera_name}/{tz_name}",
|
||||
response_model=PreviewsResponse,
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
summary="Get preview clips for specific hour",
|
||||
description="""Gets all preview clips for a specific hour in a given timezone.
|
||||
Converts the provided date/time from the specified timezone to UTC and retrieves
|
||||
all preview clips for that hour. Use camera_name='all' to get previews from all cameras.
|
||||
The tz_name should be a timezone like 'America/New_York' (use commas instead of slashes).""",
|
||||
)
|
||||
def preview_hour(year_month: str, day: int, hour: int, camera_name: str, tz_name: str):
|
||||
"""Get all mp4 previews relevant for time period given the timezone"""
|
||||
parts = year_month.split("-")
|
||||
@ -86,7 +109,15 @@ def preview_hour(year_month: str, day: int, hour: int, camera_name: str, tz_name
|
||||
return preview_ts(camera_name, start_ts, end_ts)
|
||||
|
||||
|
||||
@router.get("/preview/{camera_name}/start/{start_ts}/end/{end_ts}/frames")
|
||||
@router.get(
|
||||
"/preview/{camera_name}/start/{start_ts}/end/{end_ts}/frames",
|
||||
response_model=PreviewFramesResponse,
|
||||
dependencies=[Depends(require_camera_access)],
|
||||
summary="Get cached preview frame filenames",
|
||||
description="""Gets a list of cached preview frame filenames for a specific camera and time range.
|
||||
Returns an array of filenames for preview frames that fall within the specified time period,
|
||||
sorted in chronological order. These are individual frame images cached for quick preview display.""",
|
||||
)
|
||||
def get_preview_frames_from_cache(camera_name: str, start_ts: float, end_ts: float):
|
||||
"""Get list of cached preview frames"""
|
||||
preview_dir = os.path.join(CACHE_DIR, "preview_frames")
|
||||
|
||||
@ -4,15 +4,21 @@ import datetime
|
||||
import logging
|
||||
from functools import reduce
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import pandas as pd
|
||||
from fastapi import APIRouter
|
||||
from fastapi import APIRouter, Request
|
||||
from fastapi.params import Depends
|
||||
from fastapi.responses import JSONResponse
|
||||
from peewee import Case, DoesNotExist, IntegrityError, fn, operator
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.auth import get_current_user, require_role
|
||||
from frigate.api.auth import (
|
||||
get_allowed_cameras_for_filter,
|
||||
get_current_user,
|
||||
require_camera_access,
|
||||
require_role,
|
||||
)
|
||||
from frigate.api.defs.query.review_query_parameters import (
|
||||
ReviewActivityMotionQueryParams,
|
||||
ReviewQueryParams,
|
||||
@ -26,9 +32,11 @@ from frigate.api.defs.response.review_response import (
|
||||
ReviewSummaryResponse,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.embeddings import EmbeddingsContext
|
||||
from frigate.models import Recordings, ReviewSegment, UserReviewStatus
|
||||
from frigate.review.types import SeverityEnum
|
||||
from frigate.util.builtin import get_tz_modifiers
|
||||
from frigate.util.time import get_dst_transitions
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -39,6 +47,7 @@ router = APIRouter(tags=[Tags.review])
|
||||
async def review(
|
||||
params: ReviewQueryParams = Depends(),
|
||||
current_user: dict = Depends(get_current_user),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
if isinstance(current_user, JSONResponse):
|
||||
return current_user
|
||||
@ -63,8 +72,14 @@ async def review(
|
||||
]
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
requested = set(cameras.split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content=[])
|
||||
camera_list = list(filtered)
|
||||
else:
|
||||
camera_list = allowed_cameras
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
|
||||
if labels != "all":
|
||||
# use matching so segments with multiple labels
|
||||
@ -138,7 +153,7 @@ async def review(
|
||||
|
||||
|
||||
@router.get("/review_ids", response_model=list[ReviewSegmentResponse])
|
||||
def review_ids(ids: str):
|
||||
async def review_ids(request: Request, ids: str):
|
||||
ids = ids.split(",")
|
||||
|
||||
if not ids:
|
||||
@ -147,6 +162,18 @@ def review_ids(ids: str):
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
for review_id in ids:
|
||||
try:
|
||||
review = ReviewSegment.get(ReviewSegment.id == review_id)
|
||||
await require_camera_access(review.camera, request=request)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": f"Review {review_id} not found"}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
try:
|
||||
reviews = (
|
||||
ReviewSegment.select().where(ReviewSegment.id << ids).dicts().iterator()
|
||||
@ -163,13 +190,13 @@ def review_ids(ids: str):
|
||||
async def review_summary(
|
||||
params: ReviewSummaryQueryParams = Depends(),
|
||||
current_user: dict = Depends(get_current_user),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
if isinstance(current_user, JSONResponse):
|
||||
return current_user
|
||||
|
||||
user_id = current_user["username"]
|
||||
|
||||
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
|
||||
day_ago = (datetime.datetime.now() - datetime.timedelta(hours=24)).timestamp()
|
||||
|
||||
cameras = params.cameras
|
||||
@ -179,8 +206,14 @@ async def review_summary(
|
||||
clauses = [(ReviewSegment.start_time > day_ago)]
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
requested = set(cameras.split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content={})
|
||||
camera_list = list(filtered)
|
||||
else:
|
||||
camera_list = allowed_cameras
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
|
||||
if labels != "all":
|
||||
# use matching so segments with multiple labels
|
||||
@ -274,8 +307,14 @@ async def review_summary(
|
||||
clauses = []
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
requested = set(cameras.split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content={})
|
||||
camera_list = list(filtered)
|
||||
else:
|
||||
camera_list = allowed_cameras
|
||||
clauses.append((ReviewSegment.camera << camera_list))
|
||||
|
||||
if labels != "all":
|
||||
# use matching so segments with multiple labels
|
||||
@ -289,95 +328,142 @@ async def review_summary(
|
||||
)
|
||||
clauses.append(reduce(operator.or_, label_clauses))
|
||||
|
||||
day_in_seconds = 60 * 60 * 24
|
||||
last_month_query = (
|
||||
# Find the time range of available data
|
||||
time_range_query = (
|
||||
ReviewSegment.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
ReviewSegment.start_time,
|
||||
"unixepoch",
|
||||
hour_modifier,
|
||||
minute_modifier,
|
||||
),
|
||||
).alias("day"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.alert)
|
||||
& (UserReviewStatus.has_been_reviewed == True),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_alert"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.detection)
|
||||
& (UserReviewStatus.has_been_reviewed == True),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_detection"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_alert"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_detection"),
|
||||
)
|
||||
.left_outer_join(
|
||||
UserReviewStatus,
|
||||
on=(
|
||||
(ReviewSegment.id == UserReviewStatus.review_segment)
|
||||
& (UserReviewStatus.user_id == user_id)
|
||||
),
|
||||
fn.MIN(ReviewSegment.start_time).alias("min_time"),
|
||||
fn.MAX(ReviewSegment.start_time).alias("max_time"),
|
||||
)
|
||||
.where(reduce(operator.and_, clauses) if clauses else True)
|
||||
.group_by(
|
||||
(ReviewSegment.start_time + seconds_offset).cast("int") / day_in_seconds
|
||||
)
|
||||
.order_by(ReviewSegment.start_time.desc())
|
||||
.dicts()
|
||||
.get()
|
||||
)
|
||||
|
||||
min_time = time_range_query.get("min_time")
|
||||
max_time = time_range_query.get("max_time")
|
||||
|
||||
data = {
|
||||
"last24Hours": last_24_query,
|
||||
}
|
||||
|
||||
for e in last_month_query.dicts().iterator():
|
||||
data[e["day"]] = e
|
||||
# If no data, return early
|
||||
if min_time is None or max_time is None:
|
||||
return JSONResponse(content=data)
|
||||
|
||||
# Get DST transition periods
|
||||
dst_periods = get_dst_transitions(params.timezone, min_time, max_time)
|
||||
|
||||
day_in_seconds = 60 * 60 * 24
|
||||
|
||||
# Query each DST period separately with the correct offset
|
||||
for period_start, period_end, period_offset in dst_periods:
|
||||
# Calculate hour/minute modifiers for this period
|
||||
hours_offset = int(period_offset / 60 / 60)
|
||||
minutes_offset = int(period_offset / 60 - hours_offset * 60)
|
||||
period_hour_modifier = f"{hours_offset} hour"
|
||||
period_minute_modifier = f"{minutes_offset} minute"
|
||||
|
||||
# Build clauses including time range for this period
|
||||
period_clauses = clauses.copy()
|
||||
period_clauses.append(
|
||||
(ReviewSegment.start_time >= period_start)
|
||||
& (ReviewSegment.start_time <= period_end)
|
||||
)
|
||||
|
||||
period_query = (
|
||||
ReviewSegment.select(
|
||||
fn.strftime(
|
||||
"%Y-%m-%d",
|
||||
fn.datetime(
|
||||
ReviewSegment.start_time,
|
||||
"unixepoch",
|
||||
period_hour_modifier,
|
||||
period_minute_modifier,
|
||||
),
|
||||
).alias("day"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.alert)
|
||||
& (UserReviewStatus.has_been_reviewed == True),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_alert"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.detection)
|
||||
& (UserReviewStatus.has_been_reviewed == True),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_detection"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_alert"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_detection"),
|
||||
)
|
||||
.left_outer_join(
|
||||
UserReviewStatus,
|
||||
on=(
|
||||
(ReviewSegment.id == UserReviewStatus.review_segment)
|
||||
& (UserReviewStatus.user_id == user_id)
|
||||
),
|
||||
)
|
||||
.where(reduce(operator.and_, period_clauses))
|
||||
.group_by(
|
||||
(ReviewSegment.start_time + period_offset).cast("int") / day_in_seconds
|
||||
)
|
||||
.order_by(ReviewSegment.start_time.desc())
|
||||
)
|
||||
|
||||
# Merge results from this period
|
||||
for e in period_query.dicts().iterator():
|
||||
day_key = e["day"]
|
||||
if day_key in data:
|
||||
# Merge counts if day already exists (edge case at DST boundary)
|
||||
data[day_key]["reviewed_alert"] += e["reviewed_alert"] or 0
|
||||
data[day_key]["reviewed_detection"] += e["reviewed_detection"] or 0
|
||||
data[day_key]["total_alert"] += e["total_alert"] or 0
|
||||
data[day_key]["total_detection"] += e["total_detection"] or 0
|
||||
else:
|
||||
data[day_key] = e
|
||||
|
||||
return JSONResponse(content=data)
|
||||
|
||||
|
||||
@router.post("/reviews/viewed", response_model=GenericResponse)
|
||||
async def set_multiple_reviewed(
|
||||
request: Request,
|
||||
body: ReviewModifyMultipleBody,
|
||||
current_user: dict = Depends(get_current_user),
|
||||
):
|
||||
@ -388,26 +474,33 @@ async def set_multiple_reviewed(
|
||||
|
||||
for review_id in body.ids:
|
||||
try:
|
||||
review = ReviewSegment.get(ReviewSegment.id == review_id)
|
||||
await require_camera_access(review.camera, request=request)
|
||||
review_status = UserReviewStatus.get(
|
||||
UserReviewStatus.user_id == user_id,
|
||||
UserReviewStatus.review_segment == review_id,
|
||||
)
|
||||
# If it exists and isn’t reviewed, update it
|
||||
if not review_status.has_been_reviewed:
|
||||
review_status.has_been_reviewed = True
|
||||
# Update based on the reviewed parameter
|
||||
if review_status.has_been_reviewed != body.reviewed:
|
||||
review_status.has_been_reviewed = body.reviewed
|
||||
review_status.save()
|
||||
except DoesNotExist:
|
||||
try:
|
||||
UserReviewStatus.create(
|
||||
user_id=user_id,
|
||||
review_segment=ReviewSegment.get(id=review_id),
|
||||
has_been_reviewed=True,
|
||||
has_been_reviewed=body.reviewed,
|
||||
)
|
||||
except (DoesNotExist, IntegrityError):
|
||||
pass
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Reviewed multiple items"}),
|
||||
content=(
|
||||
{
|
||||
"success": True,
|
||||
"message": f"Marked multiple items as {'reviewed' if body.reviewed else 'unreviewed'}",
|
||||
}
|
||||
),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
@ -469,7 +562,10 @@ def delete_reviews(body: ReviewModifyMultipleBody):
|
||||
@router.get(
|
||||
"/review/activity/motion", response_model=list[ReviewActivityMotionResponse]
|
||||
)
|
||||
def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
def motion_activity(
|
||||
params: ReviewActivityMotionQueryParams = Depends(),
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
"""Get motion and audio activity."""
|
||||
cameras = params.cameras
|
||||
before = params.before or datetime.datetime.now().timestamp()
|
||||
@ -484,8 +580,14 @@ def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
clauses.append((Recordings.motion > 0))
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
requested = set(cameras.split(","))
|
||||
filtered = requested.intersection(allowed_cameras)
|
||||
if not filtered:
|
||||
return JSONResponse(content=[])
|
||||
camera_list = list(filtered)
|
||||
clauses.append((Recordings.camera << camera_list))
|
||||
else:
|
||||
clauses.append((Recordings.camera << allowed_cameras))
|
||||
|
||||
data: list[Recordings] = (
|
||||
Recordings.select(
|
||||
@ -543,15 +645,13 @@ def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
|
||||
|
||||
@router.get("/review/event/{event_id}", response_model=ReviewSegmentResponse)
|
||||
def get_review_from_event(event_id: str):
|
||||
async def get_review_from_event(request: Request, event_id: str):
|
||||
try:
|
||||
return JSONResponse(
|
||||
model_to_dict(
|
||||
ReviewSegment.get(
|
||||
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
|
||||
)
|
||||
)
|
||||
review = ReviewSegment.get(
|
||||
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
|
||||
)
|
||||
await require_camera_access(review.camera, request=request)
|
||||
return JSONResponse(model_to_dict(review))
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Review item not found"},
|
||||
@ -560,11 +660,11 @@ def get_review_from_event(event_id: str):
|
||||
|
||||
|
||||
@router.get("/review/{review_id}", response_model=ReviewSegmentResponse)
|
||||
def get_review(review_id: str):
|
||||
async def get_review(request: Request, review_id: str):
|
||||
try:
|
||||
return JSONResponse(
|
||||
content=model_to_dict(ReviewSegment.get(ReviewSegment.id == review_id))
|
||||
)
|
||||
review = ReviewSegment.get(ReviewSegment.id == review_id)
|
||||
await require_camera_access(review.camera, request=request)
|
||||
return JSONResponse(content=model_to_dict(review))
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Review item not found"},
|
||||
@ -606,3 +706,35 @@ async def set_not_reviewed(
|
||||
content=({"success": True, "message": f"Set Review {review_id} as not viewed"}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/review/summarize/start/{start_ts}/end/{end_ts}",
|
||||
description="Use GenAI to summarize review items over a period of time.",
|
||||
)
|
||||
def generate_review_summary(request: Request, start_ts: float, end_ts: float):
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
if not config.genai.provider:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "GenAI must be configured to use this feature.",
|
||||
}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
summary = context.generate_review_summary(start_ts, end_ts)
|
||||
|
||||
if summary:
|
||||
return JSONResponse(
|
||||
content=({"success": True, "summary": summary}), status_code=200
|
||||
)
|
||||
else:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Failed to create summary."}),
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
276
frigate/app.py
276
frigate/app.py
@ -5,6 +5,7 @@ import os
|
||||
import secrets
|
||||
import shutil
|
||||
from multiprocessing import Queue
|
||||
from multiprocessing.managers import DictProxy, SyncManager
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -14,19 +15,20 @@ import uvicorn
|
||||
from peewee_migrate import Router
|
||||
from playhouse.sqlite_ext import SqliteExtDatabase
|
||||
|
||||
import frigate.util as util
|
||||
from frigate.api.auth import hash_password
|
||||
from frigate.api.fastapi_app import create_fastapi_app
|
||||
from frigate.camera import CameraMetrics, PTZMetrics
|
||||
from frigate.camera.maintainer import CameraMaintainer
|
||||
from frigate.comms.base_communicator import Communicator
|
||||
from frigate.comms.config_updater import ConfigPublisher
|
||||
from frigate.comms.dispatcher import Dispatcher
|
||||
from frigate.comms.event_metadata_updater import EventMetadataPublisher
|
||||
from frigate.comms.inter_process import InterProcessCommunicator
|
||||
from frigate.comms.mqtt import MqttClient
|
||||
from frigate.comms.object_detector_signaler import DetectorProxy
|
||||
from frigate.comms.webpush import WebPushClient
|
||||
from frigate.comms.ws import WebSocketClient
|
||||
from frigate.comms.zmq_proxy import ZmqProxy
|
||||
from frigate.config.camera.updater import CameraConfigUpdatePublisher
|
||||
from frigate.config.config import FrigateConfig
|
||||
from frigate.const import (
|
||||
CACHE_DIR,
|
||||
@ -36,12 +38,12 @@ from frigate.const import (
|
||||
FACE_DIR,
|
||||
MODEL_CACHE_DIR,
|
||||
RECORD_DIR,
|
||||
SHM_FRAMES_VAR,
|
||||
THUMB_DIR,
|
||||
TRIGGER_DIR,
|
||||
)
|
||||
from frigate.data_processing.types import DataProcessorMetrics
|
||||
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
||||
from frigate.embeddings import EmbeddingsContext, manage_embeddings
|
||||
from frigate.embeddings import EmbeddingProcess, EmbeddingsContext
|
||||
from frigate.events.audio import AudioProcessor
|
||||
from frigate.events.cleanup import EventCleanup
|
||||
from frigate.events.maintainer import EventProcessor
|
||||
@ -55,56 +57,58 @@ from frigate.models import (
|
||||
Regions,
|
||||
ReviewSegment,
|
||||
Timeline,
|
||||
Trigger,
|
||||
User,
|
||||
)
|
||||
from frigate.object_detection.base import ObjectDetectProcess
|
||||
from frigate.output.output import output_frames
|
||||
from frigate.output.output import OutputProcess
|
||||
from frigate.ptz.autotrack import PtzAutoTrackerThread
|
||||
from frigate.ptz.onvif import OnvifController
|
||||
from frigate.record.cleanup import RecordingCleanup
|
||||
from frigate.record.export import migrate_exports
|
||||
from frigate.record.record import manage_recordings
|
||||
from frigate.review.review import manage_review_segments
|
||||
from frigate.record.record import RecordProcess
|
||||
from frigate.review.review import ReviewProcess
|
||||
from frigate.stats.emitter import StatsEmitter
|
||||
from frigate.stats.util import stats_init
|
||||
from frigate.storage import StorageMaintainer
|
||||
from frigate.timeline import TimelineProcessor
|
||||
from frigate.track.object_processing import TrackedObjectProcessor
|
||||
from frigate.util.builtin import empty_and_close_queue
|
||||
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
|
||||
from frigate.util.object import get_camera_regions_grid
|
||||
from frigate.util.image import UntrackedSharedMemory
|
||||
from frigate.util.services import set_file_limit
|
||||
from frigate.version import VERSION
|
||||
from frigate.video import capture_camera, track_camera
|
||||
from frigate.watchdog import FrigateWatchdog
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FrigateApp:
|
||||
def __init__(self, config: FrigateConfig) -> None:
|
||||
def __init__(
|
||||
self, config: FrigateConfig, manager: SyncManager, stop_event: MpEvent
|
||||
) -> None:
|
||||
self.metrics_manager = manager
|
||||
self.audio_process: Optional[mp.Process] = None
|
||||
self.stop_event: MpEvent = mp.Event()
|
||||
self.stop_event = stop_event
|
||||
self.detection_queue: Queue = mp.Queue()
|
||||
self.detectors: dict[str, ObjectDetectProcess] = {}
|
||||
self.detection_out_events: dict[str, MpEvent] = {}
|
||||
self.detection_shms: list[mp.shared_memory.SharedMemory] = []
|
||||
self.log_queue: Queue = mp.Queue()
|
||||
self.camera_metrics: dict[str, CameraMetrics] = {}
|
||||
self.camera_metrics: DictProxy = self.metrics_manager.dict()
|
||||
self.embeddings_metrics: DataProcessorMetrics | None = (
|
||||
DataProcessorMetrics()
|
||||
DataProcessorMetrics(
|
||||
self.metrics_manager, list(config.classification.custom.keys())
|
||||
)
|
||||
if (
|
||||
config.semantic_search.enabled
|
||||
or config.lpr.enabled
|
||||
or config.face_recognition.enabled
|
||||
or len(config.classification.custom) > 0
|
||||
)
|
||||
else None
|
||||
)
|
||||
self.ptz_metrics: dict[str, PTZMetrics] = {}
|
||||
self.processes: dict[str, int] = {}
|
||||
self.embeddings: Optional[EmbeddingsContext] = None
|
||||
self.region_grids: dict[str, list[list[dict[str, int]]]] = {}
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.config = config
|
||||
|
||||
def ensure_dirs(self) -> None:
|
||||
@ -121,6 +125,9 @@ class FrigateApp:
|
||||
if self.config.face_recognition.enabled:
|
||||
dirs.append(FACE_DIR)
|
||||
|
||||
if self.config.semantic_search.enabled:
|
||||
dirs.append(TRIGGER_DIR)
|
||||
|
||||
for d in dirs:
|
||||
if not os.path.exists(d) and not os.path.islink(d):
|
||||
logger.info(f"Creating directory: {d}")
|
||||
@ -131,7 +138,7 @@ class FrigateApp:
|
||||
def init_camera_metrics(self) -> None:
|
||||
# create camera_metrics
|
||||
for camera_name in self.config.cameras.keys():
|
||||
self.camera_metrics[camera_name] = CameraMetrics()
|
||||
self.camera_metrics[camera_name] = CameraMetrics(self.metrics_manager)
|
||||
self.ptz_metrics[camera_name] = PTZMetrics(
|
||||
autotracker_enabled=self.config.cameras[
|
||||
camera_name
|
||||
@ -140,8 +147,16 @@ class FrigateApp:
|
||||
|
||||
def init_queues(self) -> None:
|
||||
# Queue for cameras to push tracked objects to
|
||||
# leaving room for 2 extra cameras to be added
|
||||
self.detected_frames_queue: Queue = mp.Queue(
|
||||
maxsize=sum(camera.enabled for camera in self.config.cameras.values()) * 2
|
||||
maxsize=(
|
||||
sum(
|
||||
camera.enabled_in_config == True
|
||||
for camera in self.config.cameras.values()
|
||||
)
|
||||
+ 2
|
||||
)
|
||||
* 2
|
||||
)
|
||||
|
||||
# Queue for timeline events
|
||||
@ -217,52 +232,24 @@ class FrigateApp:
|
||||
self.processes["go2rtc"] = proc.info["pid"]
|
||||
|
||||
def init_recording_manager(self) -> None:
|
||||
recording_process = util.Process(
|
||||
target=manage_recordings,
|
||||
name="recording_manager",
|
||||
args=(self.config,),
|
||||
)
|
||||
recording_process.daemon = True
|
||||
recording_process = RecordProcess(self.config, self.stop_event)
|
||||
self.recording_process = recording_process
|
||||
recording_process.start()
|
||||
self.processes["recording"] = recording_process.pid or 0
|
||||
logger.info(f"Recording process started: {recording_process.pid}")
|
||||
|
||||
def init_review_segment_manager(self) -> None:
|
||||
review_segment_process = util.Process(
|
||||
target=manage_review_segments,
|
||||
name="review_segment_manager",
|
||||
args=(self.config,),
|
||||
)
|
||||
review_segment_process.daemon = True
|
||||
review_segment_process = ReviewProcess(self.config, self.stop_event)
|
||||
self.review_segment_process = review_segment_process
|
||||
review_segment_process.start()
|
||||
self.processes["review_segment"] = review_segment_process.pid or 0
|
||||
logger.info(f"Review process started: {review_segment_process.pid}")
|
||||
|
||||
def init_embeddings_manager(self) -> None:
|
||||
genai_cameras = [
|
||||
c for c in self.config.cameras.values() if c.enabled and c.genai.enabled
|
||||
]
|
||||
|
||||
if (
|
||||
not self.config.semantic_search.enabled
|
||||
and not genai_cameras
|
||||
and not self.config.lpr.enabled
|
||||
and not self.config.face_recognition.enabled
|
||||
and not self.config.classification.bird.enabled
|
||||
):
|
||||
return
|
||||
|
||||
embedding_process = util.Process(
|
||||
target=manage_embeddings,
|
||||
name="embeddings_manager",
|
||||
args=(
|
||||
self.config,
|
||||
self.embeddings_metrics,
|
||||
),
|
||||
# always start the embeddings process
|
||||
embedding_process = EmbeddingProcess(
|
||||
self.config, self.embeddings_metrics, self.stop_event
|
||||
)
|
||||
embedding_process.daemon = True
|
||||
self.embedding_process = embedding_process
|
||||
embedding_process.start()
|
||||
self.processes["embeddings"] = embedding_process.pid or 0
|
||||
@ -279,7 +266,9 @@ class FrigateApp:
|
||||
"synchronous": "NORMAL", # Safe when using WAL https://www.sqlite.org/pragma.html#pragma_synchronous
|
||||
},
|
||||
timeout=max(
|
||||
60, 10 * len([c for c in self.config.cameras.values() if c.enabled])
|
||||
60,
|
||||
10
|
||||
* len([c for c in self.config.cameras.values() if c.enabled_in_config]),
|
||||
),
|
||||
load_vec_extension=self.config.semantic_search.enabled,
|
||||
)
|
||||
@ -293,6 +282,7 @@ class FrigateApp:
|
||||
ReviewSegment,
|
||||
Timeline,
|
||||
User,
|
||||
Trigger,
|
||||
]
|
||||
self.db.bind(models)
|
||||
|
||||
@ -308,24 +298,15 @@ class FrigateApp:
|
||||
migrate_exports(self.config.ffmpeg, list(self.config.cameras.keys()))
|
||||
|
||||
def init_embeddings_client(self) -> None:
|
||||
genai_cameras = [
|
||||
c for c in self.config.cameras.values() if c.enabled and c.genai.enabled
|
||||
]
|
||||
|
||||
if (
|
||||
self.config.semantic_search.enabled
|
||||
or self.config.lpr.enabled
|
||||
or genai_cameras
|
||||
or self.config.face_recognition.enabled
|
||||
):
|
||||
# Create a client for other processes to use
|
||||
self.embeddings = EmbeddingsContext(self.db)
|
||||
# Create a client for other processes to use
|
||||
self.embeddings = EmbeddingsContext(self.db)
|
||||
|
||||
def init_inter_process_communicator(self) -> None:
|
||||
self.inter_process_communicator = InterProcessCommunicator()
|
||||
self.inter_config_updater = ConfigPublisher()
|
||||
self.inter_config_updater = CameraConfigUpdatePublisher()
|
||||
self.event_metadata_updater = EventMetadataPublisher()
|
||||
self.inter_zmq_proxy = ZmqProxy()
|
||||
self.detection_proxy = DetectorProxy()
|
||||
|
||||
def init_onvif(self) -> None:
|
||||
self.onvif_controller = OnvifController(self.config, self.ptz_metrics)
|
||||
@ -358,8 +339,6 @@ class FrigateApp:
|
||||
|
||||
def start_detectors(self) -> None:
|
||||
for name in self.config.cameras.keys():
|
||||
self.detection_out_events[name] = mp.Event()
|
||||
|
||||
try:
|
||||
largest_frame = max(
|
||||
[
|
||||
@ -391,8 +370,10 @@ class FrigateApp:
|
||||
self.detectors[name] = ObjectDetectProcess(
|
||||
name,
|
||||
self.detection_queue,
|
||||
self.detection_out_events,
|
||||
list(self.config.cameras.keys()),
|
||||
self.config,
|
||||
detector_config,
|
||||
self.stop_event,
|
||||
)
|
||||
|
||||
def start_ptz_autotracker(self) -> None:
|
||||
@ -416,79 +397,22 @@ class FrigateApp:
|
||||
self.detected_frames_processor.start()
|
||||
|
||||
def start_video_output_processor(self) -> None:
|
||||
output_processor = util.Process(
|
||||
target=output_frames,
|
||||
name="output_processor",
|
||||
args=(self.config,),
|
||||
)
|
||||
output_processor.daemon = True
|
||||
output_processor = OutputProcess(self.config, self.stop_event)
|
||||
self.output_processor = output_processor
|
||||
output_processor.start()
|
||||
logger.info(f"Output process started: {output_processor.pid}")
|
||||
|
||||
def init_historical_regions(self) -> None:
|
||||
# delete region grids for removed or renamed cameras
|
||||
cameras = list(self.config.cameras.keys())
|
||||
Regions.delete().where(~(Regions.camera << cameras)).execute()
|
||||
|
||||
# create or update region grids for each camera
|
||||
for camera in self.config.cameras.values():
|
||||
assert camera.name is not None
|
||||
self.region_grids[camera.name] = get_camera_regions_grid(
|
||||
camera.name,
|
||||
camera.detect,
|
||||
max(self.config.model.width, self.config.model.height),
|
||||
)
|
||||
|
||||
def start_camera_processors(self) -> None:
|
||||
for name, config in self.config.cameras.items():
|
||||
if not self.config.cameras[name].enabled_in_config:
|
||||
logger.info(f"Camera processor not started for disabled camera {name}")
|
||||
continue
|
||||
|
||||
camera_process = util.Process(
|
||||
target=track_camera,
|
||||
name=f"camera_processor:{name}",
|
||||
args=(
|
||||
name,
|
||||
config,
|
||||
self.config.model,
|
||||
self.config.model.merged_labelmap,
|
||||
self.detection_queue,
|
||||
self.detection_out_events[name],
|
||||
self.detected_frames_queue,
|
||||
self.camera_metrics[name],
|
||||
self.ptz_metrics[name],
|
||||
self.region_grids[name],
|
||||
),
|
||||
daemon=True,
|
||||
)
|
||||
self.camera_metrics[name].process = camera_process
|
||||
camera_process.start()
|
||||
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
|
||||
|
||||
def start_camera_capture_processes(self) -> None:
|
||||
shm_frame_count = self.shm_frame_count()
|
||||
|
||||
for name, config in self.config.cameras.items():
|
||||
if not self.config.cameras[name].enabled_in_config:
|
||||
logger.info(f"Capture process not started for disabled camera {name}")
|
||||
continue
|
||||
|
||||
# pre-create shms
|
||||
for i in range(shm_frame_count):
|
||||
frame_size = config.frame_shape_yuv[0] * config.frame_shape_yuv[1]
|
||||
self.frame_manager.create(f"{config.name}_frame{i}", frame_size)
|
||||
|
||||
capture_process = util.Process(
|
||||
target=capture_camera,
|
||||
name=f"camera_capture:{name}",
|
||||
args=(name, config, shm_frame_count, self.camera_metrics[name]),
|
||||
)
|
||||
capture_process.daemon = True
|
||||
self.camera_metrics[name].capture_process = capture_process
|
||||
capture_process.start()
|
||||
logger.info(f"Capture process started for {name}: {capture_process.pid}")
|
||||
def start_camera_processor(self) -> None:
|
||||
self.camera_maintainer = CameraMaintainer(
|
||||
self.config,
|
||||
self.detection_queue,
|
||||
self.detected_frames_queue,
|
||||
self.camera_metrics,
|
||||
self.ptz_metrics,
|
||||
self.stop_event,
|
||||
self.metrics_manager,
|
||||
)
|
||||
self.camera_maintainer.start()
|
||||
|
||||
def start_audio_processor(self) -> None:
|
||||
audio_cameras = [
|
||||
@ -498,7 +422,9 @@ class FrigateApp:
|
||||
]
|
||||
|
||||
if audio_cameras:
|
||||
self.audio_process = AudioProcessor(audio_cameras, self.camera_metrics)
|
||||
self.audio_process = AudioProcessor(
|
||||
self.config, audio_cameras, self.camera_metrics, self.stop_event
|
||||
)
|
||||
self.audio_process.start()
|
||||
self.processes["audio_detector"] = self.audio_process.pid or 0
|
||||
|
||||
@ -546,45 +472,6 @@ class FrigateApp:
|
||||
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
|
||||
self.frigate_watchdog.start()
|
||||
|
||||
def shm_frame_count(self) -> int:
|
||||
total_shm = round(shutil.disk_usage("/dev/shm").total / pow(2, 20), 1)
|
||||
|
||||
# required for log files + nginx cache
|
||||
min_req_shm = 40 + 10
|
||||
|
||||
if self.config.birdseye.restream:
|
||||
min_req_shm += 8
|
||||
|
||||
available_shm = total_shm - min_req_shm
|
||||
cam_total_frame_size = 0.0
|
||||
|
||||
for camera in self.config.cameras.values():
|
||||
if camera.enabled and camera.detect.width and camera.detect.height:
|
||||
cam_total_frame_size += round(
|
||||
(camera.detect.width * camera.detect.height * 1.5 + 270480)
|
||||
/ 1048576,
|
||||
1,
|
||||
)
|
||||
|
||||
if cam_total_frame_size == 0.0:
|
||||
return 0
|
||||
|
||||
shm_frame_count = min(
|
||||
int(os.environ.get(SHM_FRAMES_VAR, "50")),
|
||||
int(available_shm / (cam_total_frame_size)),
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Calculated total camera size {available_shm} / {cam_total_frame_size} :: {shm_frame_count} frames for each camera in SHM"
|
||||
)
|
||||
|
||||
if shm_frame_count < 20:
|
||||
logger.warning(
|
||||
f"The current SHM size of {total_shm}MB is too small, recommend increasing it to at least {round(min_req_shm + cam_total_frame_size * 20)}MB."
|
||||
)
|
||||
|
||||
return shm_frame_count
|
||||
|
||||
def init_auth(self) -> None:
|
||||
if self.config.auth.enabled:
|
||||
if User.select().count() == 0:
|
||||
@ -601,6 +488,8 @@ class FrigateApp:
|
||||
}
|
||||
).execute()
|
||||
|
||||
self.config.auth.admin_first_time_login = True
|
||||
|
||||
logger.info("********************************************************")
|
||||
logger.info("********************************************************")
|
||||
logger.info("*** Auth is enabled, but no users exist. ***")
|
||||
@ -645,19 +534,17 @@ class FrigateApp:
|
||||
self.init_recording_manager()
|
||||
self.init_review_segment_manager()
|
||||
self.init_go2rtc()
|
||||
self.start_detectors()
|
||||
self.init_embeddings_manager()
|
||||
self.bind_database()
|
||||
self.check_db_data_migrations()
|
||||
self.init_inter_process_communicator()
|
||||
self.start_detectors()
|
||||
self.init_dispatcher()
|
||||
self.init_embeddings_client()
|
||||
self.start_video_output_processor()
|
||||
self.start_ptz_autotracker()
|
||||
self.init_historical_regions()
|
||||
self.start_detected_frames_processor()
|
||||
self.start_camera_processors()
|
||||
self.start_camera_capture_processes()
|
||||
self.start_camera_processor()
|
||||
self.start_audio_processor()
|
||||
self.start_storage_maintainer()
|
||||
self.start_stats_emitter()
|
||||
@ -680,6 +567,7 @@ class FrigateApp:
|
||||
self.onvif_controller,
|
||||
self.stats_emitter,
|
||||
self.event_metadata_updater,
|
||||
self.inter_config_updater,
|
||||
),
|
||||
host="127.0.0.1",
|
||||
port=5001,
|
||||
@ -713,24 +601,6 @@ class FrigateApp:
|
||||
if self.onvif_controller:
|
||||
self.onvif_controller.close()
|
||||
|
||||
# ensure the capture processes are done
|
||||
for camera, metrics in self.camera_metrics.items():
|
||||
capture_process = metrics.capture_process
|
||||
if capture_process is not None:
|
||||
logger.info(f"Waiting for capture process for {camera} to stop")
|
||||
capture_process.terminate()
|
||||
capture_process.join()
|
||||
|
||||
# ensure the camera processors are done
|
||||
for camera, metrics in self.camera_metrics.items():
|
||||
camera_process = metrics.process
|
||||
if camera_process is not None:
|
||||
logger.info(f"Waiting for process for {camera} to stop")
|
||||
camera_process.terminate()
|
||||
camera_process.join()
|
||||
logger.info(f"Closing frame queue for {camera}")
|
||||
empty_and_close_queue(metrics.frame_queue)
|
||||
|
||||
# ensure the detectors are done
|
||||
for detector in self.detectors.values():
|
||||
detector.stop()
|
||||
@ -774,14 +644,12 @@ class FrigateApp:
|
||||
self.inter_config_updater.stop()
|
||||
self.event_metadata_updater.stop()
|
||||
self.inter_zmq_proxy.stop()
|
||||
self.detection_proxy.stop()
|
||||
|
||||
self.frame_manager.cleanup()
|
||||
while len(self.detection_shms) > 0:
|
||||
shm = self.detection_shms.pop()
|
||||
shm.close()
|
||||
shm.unlink()
|
||||
|
||||
# exit the mp Manager process
|
||||
_stop_logging()
|
||||
|
||||
os._exit(os.EX_OK)
|
||||
self.metrics_manager.shutdown()
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import multiprocessing as mp
|
||||
from multiprocessing.managers import SyncManager
|
||||
from multiprocessing.sharedctypes import Synchronized
|
||||
from multiprocessing.synchronize import Event
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class CameraMetrics:
|
||||
@ -16,25 +16,25 @@ class CameraMetrics:
|
||||
|
||||
frame_queue: mp.Queue
|
||||
|
||||
process: Optional[mp.Process]
|
||||
capture_process: Optional[mp.Process]
|
||||
process_pid: Synchronized
|
||||
capture_process_pid: Synchronized
|
||||
ffmpeg_pid: Synchronized
|
||||
|
||||
def __init__(self):
|
||||
self.camera_fps = mp.Value("d", 0)
|
||||
self.detection_fps = mp.Value("d", 0)
|
||||
self.detection_frame = mp.Value("d", 0)
|
||||
self.process_fps = mp.Value("d", 0)
|
||||
self.skipped_fps = mp.Value("d", 0)
|
||||
self.read_start = mp.Value("d", 0)
|
||||
self.audio_rms = mp.Value("d", 0)
|
||||
self.audio_dBFS = mp.Value("d", 0)
|
||||
def __init__(self, manager: SyncManager):
|
||||
self.camera_fps = manager.Value("d", 0)
|
||||
self.detection_fps = manager.Value("d", 0)
|
||||
self.detection_frame = manager.Value("d", 0)
|
||||
self.process_fps = manager.Value("d", 0)
|
||||
self.skipped_fps = manager.Value("d", 0)
|
||||
self.read_start = manager.Value("d", 0)
|
||||
self.audio_rms = manager.Value("d", 0)
|
||||
self.audio_dBFS = manager.Value("d", 0)
|
||||
|
||||
self.frame_queue = mp.Queue(maxsize=2)
|
||||
self.frame_queue = manager.Queue(maxsize=2)
|
||||
|
||||
self.process = None
|
||||
self.capture_process = None
|
||||
self.ffmpeg_pid = mp.Value("i", 0)
|
||||
self.process_pid = manager.Value("i", 0)
|
||||
self.capture_process_pid = manager.Value("i", 0)
|
||||
self.ffmpeg_pid = manager.Value("i", 0)
|
||||
|
||||
|
||||
class PTZMetrics:
|
||||
|
||||
@ -1,9 +1,20 @@
|
||||
"""Manage camera activity and updating listeners."""
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import random
|
||||
import string
|
||||
from collections import Counter
|
||||
from typing import Any, Callable
|
||||
|
||||
from frigate.config.config import FrigateConfig
|
||||
from frigate.comms.event_metadata_updater import (
|
||||
EventMetadataPublisher,
|
||||
EventMetadataTypeEnum,
|
||||
)
|
||||
from frigate.config import CameraConfig, FrigateConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CameraActivityManager:
|
||||
@ -23,26 +34,33 @@ class CameraActivityManager:
|
||||
if not camera_config.enabled_in_config:
|
||||
continue
|
||||
|
||||
self.last_camera_activity[camera_config.name] = {}
|
||||
self.camera_all_object_counts[camera_config.name] = Counter()
|
||||
self.camera_active_object_counts[camera_config.name] = Counter()
|
||||
self.__init_camera(camera_config)
|
||||
|
||||
for zone, zone_config in camera_config.zones.items():
|
||||
if zone not in self.all_zone_labels:
|
||||
self.zone_all_object_counts[zone] = Counter()
|
||||
self.zone_active_object_counts[zone] = Counter()
|
||||
self.all_zone_labels[zone] = set()
|
||||
def __init_camera(self, camera_config: CameraConfig) -> None:
|
||||
self.last_camera_activity[camera_config.name] = {}
|
||||
self.camera_all_object_counts[camera_config.name] = Counter()
|
||||
self.camera_active_object_counts[camera_config.name] = Counter()
|
||||
|
||||
self.all_zone_labels[zone].update(
|
||||
zone_config.objects
|
||||
if zone_config.objects
|
||||
else camera_config.objects.track
|
||||
)
|
||||
for zone, zone_config in camera_config.zones.items():
|
||||
if zone not in self.all_zone_labels:
|
||||
self.zone_all_object_counts[zone] = Counter()
|
||||
self.zone_active_object_counts[zone] = Counter()
|
||||
self.all_zone_labels[zone] = set()
|
||||
|
||||
self.all_zone_labels[zone].update(
|
||||
zone_config.objects
|
||||
if zone_config.objects
|
||||
else camera_config.objects.track
|
||||
)
|
||||
|
||||
def update_activity(self, new_activity: dict[str, dict[str, Any]]) -> None:
|
||||
all_objects: list[dict[str, Any]] = []
|
||||
|
||||
for camera in new_activity.keys():
|
||||
# handle cameras that were added dynamically
|
||||
if camera not in self.camera_all_object_counts:
|
||||
self.__init_camera(self.config.cameras[camera])
|
||||
|
||||
new_objects = new_activity[camera].get("objects", [])
|
||||
all_objects.extend(new_objects)
|
||||
|
||||
@ -132,3 +150,110 @@ class CameraActivityManager:
|
||||
if any_changed:
|
||||
self.publish(f"{camera}/all", sum(list(all_objects.values())))
|
||||
self.publish(f"{camera}/all/active", sum(list(active_objects.values())))
|
||||
|
||||
|
||||
class AudioActivityManager:
|
||||
def __init__(
|
||||
self, config: FrigateConfig, publish: Callable[[str, Any], None]
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.publish = publish
|
||||
self.current_audio_detections: dict[str, dict[str, dict[str, Any]]] = {}
|
||||
self.event_metadata_publisher = EventMetadataPublisher()
|
||||
|
||||
for camera_config in config.cameras.values():
|
||||
if not camera_config.audio.enabled_in_config:
|
||||
continue
|
||||
|
||||
self.__init_camera(camera_config)
|
||||
|
||||
def __init_camera(self, camera_config: CameraConfig) -> None:
|
||||
self.current_audio_detections[camera_config.name] = {}
|
||||
|
||||
def update_activity(self, new_activity: dict[str, dict[str, Any]]) -> None:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
for camera in new_activity.keys():
|
||||
# handle cameras that were added dynamically
|
||||
if camera not in self.current_audio_detections:
|
||||
self.__init_camera(self.config.cameras[camera])
|
||||
|
||||
new_detections = new_activity[camera].get("detections", [])
|
||||
if self.compare_audio_activity(camera, new_detections, now):
|
||||
logger.debug(f"Audio detections for {camera}: {new_activity}")
|
||||
self.publish(
|
||||
f"{camera}/audio/all",
|
||||
"ON" if len(self.current_audio_detections[camera]) > 0 else "OFF",
|
||||
)
|
||||
self.publish(
|
||||
"audio_detections",
|
||||
json.dumps(self.current_audio_detections),
|
||||
)
|
||||
|
||||
def compare_audio_activity(
|
||||
self, camera: str, new_detections: list[tuple[str, float]], now: float
|
||||
) -> None:
|
||||
max_not_heard = self.config.cameras[camera].audio.max_not_heard
|
||||
current = self.current_audio_detections[camera]
|
||||
|
||||
any_changed = False
|
||||
|
||||
for label, score in new_detections:
|
||||
any_changed = True
|
||||
if label in current:
|
||||
current[label]["last_detection"] = now
|
||||
current[label]["score"] = score
|
||||
else:
|
||||
rand_id = "".join(
|
||||
random.choices(string.ascii_lowercase + string.digits, k=6)
|
||||
)
|
||||
event_id = f"{now}-{rand_id}"
|
||||
self.publish(f"{camera}/audio/{label}", "ON")
|
||||
|
||||
self.event_metadata_publisher.publish(
|
||||
(
|
||||
now,
|
||||
camera,
|
||||
label,
|
||||
event_id,
|
||||
True,
|
||||
score,
|
||||
None,
|
||||
None,
|
||||
"audio",
|
||||
{},
|
||||
),
|
||||
EventMetadataTypeEnum.manual_event_create.value,
|
||||
)
|
||||
current[label] = {
|
||||
"id": event_id,
|
||||
"score": score,
|
||||
"last_detection": now,
|
||||
}
|
||||
|
||||
# expire detections
|
||||
for label in list(current.keys()):
|
||||
if now - current[label]["last_detection"] > max_not_heard:
|
||||
any_changed = True
|
||||
self.publish(f"{camera}/audio/{label}", "OFF")
|
||||
|
||||
self.event_metadata_publisher.publish(
|
||||
(current[label]["id"], now),
|
||||
EventMetadataTypeEnum.manual_event_end.value,
|
||||
)
|
||||
del current[label]
|
||||
|
||||
return any_changed
|
||||
|
||||
def expire_all(self, camera: str) -> None:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
current = self.current_audio_detections.get(camera, {})
|
||||
|
||||
for label in list(current.keys()):
|
||||
self.publish(f"{camera}/audio/{label}", "OFF")
|
||||
|
||||
self.event_metadata_publisher.publish(
|
||||
(current[label]["id"], now),
|
||||
EventMetadataTypeEnum.manual_event_end.value,
|
||||
)
|
||||
del current[label]
|
||||
|
||||
225
frigate/camera/maintainer.py
Normal file
225
frigate/camera/maintainer.py
Normal file
@ -0,0 +1,225 @@
|
||||
"""Create and maintain camera processes / management."""
|
||||
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import threading
|
||||
from multiprocessing import Queue
|
||||
from multiprocessing.managers import DictProxy, SyncManager
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
|
||||
from frigate.camera import CameraMetrics, PTZMetrics
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.config.camera import CameraConfig
|
||||
from frigate.config.camera.updater import (
|
||||
CameraConfigUpdateEnum,
|
||||
CameraConfigUpdateSubscriber,
|
||||
)
|
||||
from frigate.models import Regions
|
||||
from frigate.util.builtin import empty_and_close_queue
|
||||
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
|
||||
from frigate.util.object import get_camera_regions_grid
|
||||
from frigate.util.services import calculate_shm_requirements
|
||||
from frigate.video import CameraCapture, CameraTracker
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CameraMaintainer(threading.Thread):
|
||||
def __init__(
|
||||
self,
|
||||
config: FrigateConfig,
|
||||
detection_queue: Queue,
|
||||
detected_frames_queue: Queue,
|
||||
camera_metrics: DictProxy,
|
||||
ptz_metrics: dict[str, PTZMetrics],
|
||||
stop_event: MpEvent,
|
||||
metrics_manager: SyncManager,
|
||||
):
|
||||
super().__init__(name="camera_processor")
|
||||
self.config = config
|
||||
self.detection_queue = detection_queue
|
||||
self.detected_frames_queue = detected_frames_queue
|
||||
self.stop_event = stop_event
|
||||
self.camera_metrics = camera_metrics
|
||||
self.ptz_metrics = ptz_metrics
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.region_grids: dict[str, list[list[dict[str, int]]]] = {}
|
||||
self.update_subscriber = CameraConfigUpdateSubscriber(
|
||||
self.config,
|
||||
{},
|
||||
[
|
||||
CameraConfigUpdateEnum.add,
|
||||
CameraConfigUpdateEnum.remove,
|
||||
],
|
||||
)
|
||||
self.shm_count = self.__calculate_shm_frame_count()
|
||||
self.camera_processes: dict[str, mp.Process] = {}
|
||||
self.capture_processes: dict[str, mp.Process] = {}
|
||||
self.metrics_manager = metrics_manager
|
||||
|
||||
def __init_historical_regions(self) -> None:
|
||||
# delete region grids for removed or renamed cameras
|
||||
cameras = list(self.config.cameras.keys())
|
||||
Regions.delete().where(~(Regions.camera << cameras)).execute()
|
||||
|
||||
# create or update region grids for each camera
|
||||
for camera in self.config.cameras.values():
|
||||
assert camera.name is not None
|
||||
self.region_grids[camera.name] = get_camera_regions_grid(
|
||||
camera.name,
|
||||
camera.detect,
|
||||
max(self.config.model.width, self.config.model.height),
|
||||
)
|
||||
|
||||
def __calculate_shm_frame_count(self) -> int:
|
||||
shm_stats = calculate_shm_requirements(self.config)
|
||||
|
||||
if not shm_stats:
|
||||
# /dev/shm not available
|
||||
return 0
|
||||
|
||||
logger.debug(
|
||||
f"Calculated total camera size {shm_stats['available']} / "
|
||||
f"{shm_stats['camera_frame_size']} :: {shm_stats['shm_frame_count']} "
|
||||
f"frames for each camera in SHM"
|
||||
)
|
||||
|
||||
if shm_stats["shm_frame_count"] < 20:
|
||||
logger.warning(
|
||||
f"The current SHM size of {shm_stats['total']}MB is too small, "
|
||||
f"recommend increasing it to at least {shm_stats['min_shm']}MB."
|
||||
)
|
||||
|
||||
return shm_stats["shm_frame_count"]
|
||||
|
||||
def __start_camera_processor(
|
||||
self, name: str, config: CameraConfig, runtime: bool = False
|
||||
) -> None:
|
||||
if not config.enabled_in_config:
|
||||
logger.info(f"Camera processor not started for disabled camera {name}")
|
||||
return
|
||||
|
||||
if runtime:
|
||||
self.camera_metrics[name] = CameraMetrics(self.metrics_manager)
|
||||
self.ptz_metrics[name] = PTZMetrics(autotracker_enabled=False)
|
||||
self.region_grids[name] = get_camera_regions_grid(
|
||||
name,
|
||||
config.detect,
|
||||
max(self.config.model.width, self.config.model.height),
|
||||
)
|
||||
|
||||
try:
|
||||
largest_frame = max(
|
||||
[
|
||||
det.model.height * det.model.width * 3
|
||||
if det.model is not None
|
||||
else 320
|
||||
for det in self.config.detectors.values()
|
||||
]
|
||||
)
|
||||
UntrackedSharedMemory(name=f"out-{name}", create=True, size=20 * 6 * 4)
|
||||
UntrackedSharedMemory(
|
||||
name=name,
|
||||
create=True,
|
||||
size=largest_frame,
|
||||
)
|
||||
except FileExistsError:
|
||||
pass
|
||||
|
||||
camera_process = CameraTracker(
|
||||
config,
|
||||
self.config.model,
|
||||
self.config.model.merged_labelmap,
|
||||
self.detection_queue,
|
||||
self.detected_frames_queue,
|
||||
self.camera_metrics[name],
|
||||
self.ptz_metrics[name],
|
||||
self.region_grids[name],
|
||||
self.stop_event,
|
||||
self.config.logger,
|
||||
)
|
||||
self.camera_processes[config.name] = camera_process
|
||||
camera_process.start()
|
||||
self.camera_metrics[config.name].process_pid.value = camera_process.pid
|
||||
logger.info(f"Camera processor started for {config.name}: {camera_process.pid}")
|
||||
|
||||
def __start_camera_capture(
|
||||
self, name: str, config: CameraConfig, runtime: bool = False
|
||||
) -> None:
|
||||
if not config.enabled_in_config:
|
||||
logger.info(f"Capture process not started for disabled camera {name}")
|
||||
return
|
||||
|
||||
# pre-create shms
|
||||
count = 10 if runtime else self.shm_count
|
||||
for i in range(count):
|
||||
frame_size = config.frame_shape_yuv[0] * config.frame_shape_yuv[1]
|
||||
self.frame_manager.create(f"{config.name}_frame{i}", frame_size)
|
||||
|
||||
capture_process = CameraCapture(
|
||||
config,
|
||||
count,
|
||||
self.camera_metrics[name],
|
||||
self.stop_event,
|
||||
self.config.logger,
|
||||
)
|
||||
capture_process.daemon = True
|
||||
self.capture_processes[name] = capture_process
|
||||
capture_process.start()
|
||||
self.camera_metrics[name].capture_process_pid.value = capture_process.pid
|
||||
logger.info(f"Capture process started for {name}: {capture_process.pid}")
|
||||
|
||||
def __stop_camera_capture_process(self, camera: str) -> None:
|
||||
capture_process = self.capture_processes[camera]
|
||||
if capture_process is not None:
|
||||
logger.info(f"Waiting for capture process for {camera} to stop")
|
||||
capture_process.terminate()
|
||||
capture_process.join()
|
||||
|
||||
def __stop_camera_process(self, camera: str) -> None:
|
||||
camera_process = self.camera_processes[camera]
|
||||
if camera_process is not None:
|
||||
logger.info(f"Waiting for process for {camera} to stop")
|
||||
camera_process.terminate()
|
||||
camera_process.join()
|
||||
logger.info(f"Closing frame queue for {camera}")
|
||||
empty_and_close_queue(self.camera_metrics[camera].frame_queue)
|
||||
|
||||
def run(self):
|
||||
self.__init_historical_regions()
|
||||
|
||||
# start camera processes
|
||||
for camera, config in self.config.cameras.items():
|
||||
self.__start_camera_processor(camera, config)
|
||||
self.__start_camera_capture(camera, config)
|
||||
|
||||
while not self.stop_event.wait(1):
|
||||
updates = self.update_subscriber.check_for_updates()
|
||||
|
||||
for update_type, updated_cameras in updates.items():
|
||||
if update_type == CameraConfigUpdateEnum.add.name:
|
||||
for camera in updated_cameras:
|
||||
self.__start_camera_processor(
|
||||
camera,
|
||||
self.update_subscriber.camera_configs[camera],
|
||||
runtime=True,
|
||||
)
|
||||
self.__start_camera_capture(
|
||||
camera,
|
||||
self.update_subscriber.camera_configs[camera],
|
||||
runtime=True,
|
||||
)
|
||||
elif update_type == CameraConfigUpdateEnum.remove.name:
|
||||
self.__stop_camera_capture_process(camera)
|
||||
self.__stop_camera_process(camera)
|
||||
|
||||
# ensure the capture processes are done
|
||||
for camera in self.camera_processes.keys():
|
||||
self.__stop_camera_capture_process(camera)
|
||||
|
||||
# ensure the camera processors are done
|
||||
for camera in self.capture_processes.keys():
|
||||
self.__stop_camera_process(camera)
|
||||
|
||||
self.update_subscriber.stop()
|
||||
self.frame_manager.cleanup()
|
||||
@ -54,7 +54,7 @@ class CameraState:
|
||||
self.ptz_autotracker_thread = ptz_autotracker_thread
|
||||
self.prev_enabled = self.camera_config.enabled
|
||||
|
||||
def get_current_frame(self, draw_options: dict[str, Any] = {}):
|
||||
def get_current_frame(self, draw_options: dict[str, Any] = {}) -> np.ndarray:
|
||||
with self.current_frame_lock:
|
||||
frame_copy = np.copy(self._current_frame)
|
||||
frame_time = self.current_frame_time
|
||||
@ -228,12 +228,51 @@ class CameraState:
|
||||
position=self.camera_config.timestamp_style.position,
|
||||
)
|
||||
|
||||
if draw_options.get("paths"):
|
||||
for obj in tracked_objects.values():
|
||||
if obj["frame_time"] == frame_time and obj["path_data"]:
|
||||
color = self.config.model.colormap.get(
|
||||
obj["label"], (255, 255, 255)
|
||||
)
|
||||
|
||||
path_points = [
|
||||
(
|
||||
int(point[0][0] * self.camera_config.detect.width),
|
||||
int(point[0][1] * self.camera_config.detect.height),
|
||||
)
|
||||
for point in obj["path_data"]
|
||||
]
|
||||
|
||||
for point in path_points:
|
||||
cv2.circle(frame_copy, point, 5, color, -1)
|
||||
|
||||
for i in range(1, len(path_points)):
|
||||
cv2.line(
|
||||
frame_copy,
|
||||
path_points[i - 1],
|
||||
path_points[i],
|
||||
color,
|
||||
2,
|
||||
)
|
||||
|
||||
bottom_center = (
|
||||
int((obj["box"][0] + obj["box"][2]) / 2),
|
||||
int(obj["box"][3]),
|
||||
)
|
||||
cv2.line(
|
||||
frame_copy,
|
||||
path_points[-1],
|
||||
bottom_center,
|
||||
color,
|
||||
2,
|
||||
)
|
||||
|
||||
return frame_copy
|
||||
|
||||
def finished(self, obj_id):
|
||||
del self.tracked_objects[obj_id]
|
||||
|
||||
def on(self, event_type: str, callback: Callable[[dict], None]):
|
||||
def on(self, event_type: str, callback: Callable):
|
||||
self.callbacks[event_type].append(callback)
|
||||
|
||||
def update(
|
||||
@ -491,17 +530,19 @@ class CameraState:
|
||||
|
||||
# write clean snapshot if enabled
|
||||
if self.camera_config.snapshots.clean_copy:
|
||||
ret, png = cv2.imencode(".png", img_frame)
|
||||
ret, webp = cv2.imencode(
|
||||
".webp", img_frame, [int(cv2.IMWRITE_WEBP_QUALITY), 80]
|
||||
)
|
||||
|
||||
if ret:
|
||||
with open(
|
||||
os.path.join(
|
||||
CLIPS_DIR,
|
||||
f"{self.camera_config.name}-{event_id}-clean.png",
|
||||
f"{self.camera_config.name}-{event_id}-clean.webp",
|
||||
),
|
||||
"wb",
|
||||
) as p:
|
||||
p.write(png.tobytes())
|
||||
p.write(webp.tobytes())
|
||||
|
||||
# write jpg snapshot with optional annotations
|
||||
if draw.get("boxes") and isinstance(draw.get("boxes"), list):
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
"""Facilitates communication between processes."""
|
||||
|
||||
import multiprocessing as mp
|
||||
from _pickle import UnpicklingError
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import zmq
|
||||
|
||||
@ -32,7 +33,7 @@ class ConfigPublisher:
|
||||
class ConfigSubscriber:
|
||||
"""Simplifies receiving an updated config."""
|
||||
|
||||
def __init__(self, topic: str, exact=False) -> None:
|
||||
def __init__(self, topic: str, exact: bool = False) -> None:
|
||||
self.topic = topic
|
||||
self.exact = exact
|
||||
self.context = zmq.Context()
|
||||
@ -40,7 +41,7 @@ class ConfigSubscriber:
|
||||
self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
|
||||
self.socket.connect(SOCKET_PUB_SUB)
|
||||
|
||||
def check_for_update(self) -> Optional[tuple[str, Any]]:
|
||||
def check_for_update(self) -> tuple[str, Any] | tuple[None, None]:
|
||||
"""Returns updated config or None if no update."""
|
||||
try:
|
||||
topic = self.socket.recv_string(flags=zmq.NOBLOCK)
|
||||
@ -50,7 +51,7 @@ class ConfigSubscriber:
|
||||
return (topic, obj)
|
||||
else:
|
||||
return (None, None)
|
||||
except zmq.ZMQError:
|
||||
except (zmq.ZMQError, UnicodeDecodeError, UnpicklingError):
|
||||
return (None, None)
|
||||
|
||||
def stop(self) -> None:
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
"""Facilitates communication between processes."""
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from .zmq_proxy import Publisher, Subscriber
|
||||
|
||||
@ -19,8 +19,7 @@ class DetectionPublisher(Publisher):
|
||||
|
||||
topic_base = "detection/"
|
||||
|
||||
def __init__(self, topic: DetectionTypeEnum) -> None:
|
||||
topic = topic.value
|
||||
def __init__(self, topic: str) -> None:
|
||||
super().__init__(topic)
|
||||
|
||||
|
||||
@ -29,16 +28,15 @@ class DetectionSubscriber(Subscriber):
|
||||
|
||||
topic_base = "detection/"
|
||||
|
||||
def __init__(self, topic: DetectionTypeEnum) -> None:
|
||||
topic = topic.value
|
||||
def __init__(self, topic: str) -> None:
|
||||
super().__init__(topic)
|
||||
|
||||
def check_for_update(
|
||||
self, timeout: float = None
|
||||
) -> Optional[tuple[DetectionTypeEnum, Any]]:
|
||||
self, timeout: float | None = None
|
||||
) -> tuple[str, Any] | tuple[None, None] | None:
|
||||
return super().check_for_update(timeout)
|
||||
|
||||
def _return_object(self, topic: str, payload: Any) -> Any:
|
||||
if payload is None:
|
||||
return (None, None)
|
||||
return (DetectionTypeEnum[topic[len(self.topic_base) :]], payload)
|
||||
return (topic[len(self.topic_base) :], payload)
|
||||
|
||||
@ -3,24 +3,32 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Callable, Optional
|
||||
from typing import Any, Callable, Optional, cast
|
||||
|
||||
from frigate.camera import PTZMetrics
|
||||
from frigate.camera.activity_manager import CameraActivityManager
|
||||
from frigate.camera.activity_manager import AudioActivityManager, CameraActivityManager
|
||||
from frigate.comms.base_communicator import Communicator
|
||||
from frigate.comms.config_updater import ConfigPublisher
|
||||
from frigate.comms.webpush import WebPushClient
|
||||
from frigate.config import BirdseyeModeEnum, FrigateConfig
|
||||
from frigate.config.camera.updater import (
|
||||
CameraConfigUpdateEnum,
|
||||
CameraConfigUpdatePublisher,
|
||||
CameraConfigUpdateTopic,
|
||||
)
|
||||
from frigate.const import (
|
||||
CLEAR_ONGOING_REVIEW_SEGMENTS,
|
||||
EXPIRE_AUDIO_ACTIVITY,
|
||||
INSERT_MANY_RECORDINGS,
|
||||
INSERT_PREVIEW,
|
||||
NOTIFICATION_TEST,
|
||||
REQUEST_REGION_GRID,
|
||||
UPDATE_AUDIO_ACTIVITY,
|
||||
UPDATE_BIRDSEYE_LAYOUT,
|
||||
UPDATE_CAMERA_ACTIVITY,
|
||||
UPDATE_EMBEDDINGS_REINDEX_PROGRESS,
|
||||
UPDATE_EVENT_DESCRIPTION,
|
||||
UPDATE_MODEL_STATE,
|
||||
UPDATE_REVIEW_DESCRIPTION,
|
||||
UPSERT_REVIEW_SEGMENT,
|
||||
)
|
||||
from frigate.models import Event, Previews, Recordings, ReviewSegment
|
||||
@ -38,7 +46,7 @@ class Dispatcher:
|
||||
def __init__(
|
||||
self,
|
||||
config: FrigateConfig,
|
||||
config_updater: ConfigPublisher,
|
||||
config_updater: CameraConfigUpdatePublisher,
|
||||
onvif: OnvifController,
|
||||
ptz_metrics: dict[str, PTZMetrics],
|
||||
communicators: list[Communicator],
|
||||
@ -49,11 +57,13 @@ class Dispatcher:
|
||||
self.ptz_metrics = ptz_metrics
|
||||
self.comms = communicators
|
||||
self.camera_activity = CameraActivityManager(config, self.publish)
|
||||
self.model_state = {}
|
||||
self.embeddings_reindex = {}
|
||||
|
||||
self.audio_activity = AudioActivityManager(config, self.publish)
|
||||
self.model_state: dict[str, ModelStatusTypesEnum] = {}
|
||||
self.embeddings_reindex: dict[str, Any] = {}
|
||||
self.birdseye_layout: dict[str, Any] = {}
|
||||
self._camera_settings_handlers: dict[str, Callable] = {
|
||||
"audio": self._on_audio_command,
|
||||
"audio_transcription": self._on_audio_transcription_command,
|
||||
"detect": self._on_detect_command,
|
||||
"enabled": self._on_enabled_command,
|
||||
"improve_contrast": self._on_motion_improve_contrast_command,
|
||||
@ -68,6 +78,8 @@ class Dispatcher:
|
||||
"birdseye_mode": self._on_birdseye_mode_command,
|
||||
"review_alerts": self._on_alerts_command,
|
||||
"review_detections": self._on_detections_command,
|
||||
"object_descriptions": self._on_object_description_command,
|
||||
"review_descriptions": self._on_review_description_command,
|
||||
}
|
||||
self._global_settings_handlers: dict[str, Callable] = {
|
||||
"notifications": self._on_global_notification_command,
|
||||
@ -80,10 +92,12 @@ class Dispatcher:
|
||||
(comm for comm in communicators if isinstance(comm, WebPushClient)), None
|
||||
)
|
||||
|
||||
def _receive(self, topic: str, payload: str) -> Optional[Any]:
|
||||
def _receive(self, topic: str, payload: Any) -> Optional[Any]:
|
||||
"""Handle receiving of payload from communicators."""
|
||||
|
||||
def handle_camera_command(command_type, camera_name, command, payload):
|
||||
def handle_camera_command(
|
||||
command_type: str, camera_name: str, command: str, payload: str
|
||||
) -> None:
|
||||
try:
|
||||
if command_type == "set":
|
||||
self._camera_settings_handlers[command](camera_name, payload)
|
||||
@ -92,13 +106,13 @@ class Dispatcher:
|
||||
except KeyError:
|
||||
logger.error(f"Invalid command type or handler: {command_type}")
|
||||
|
||||
def handle_restart():
|
||||
def handle_restart() -> None:
|
||||
restart_frigate()
|
||||
|
||||
def handle_insert_many_recordings():
|
||||
def handle_insert_many_recordings() -> None:
|
||||
Recordings.insert_many(payload).execute()
|
||||
|
||||
def handle_request_region_grid():
|
||||
def handle_request_region_grid() -> Any:
|
||||
camera = payload
|
||||
grid = get_camera_regions_grid(
|
||||
camera,
|
||||
@ -107,26 +121,32 @@ class Dispatcher:
|
||||
)
|
||||
return grid
|
||||
|
||||
def handle_insert_preview():
|
||||
def handle_insert_preview() -> None:
|
||||
Previews.insert(payload).execute()
|
||||
|
||||
def handle_upsert_review_segment():
|
||||
def handle_upsert_review_segment() -> None:
|
||||
ReviewSegment.insert(payload).on_conflict(
|
||||
conflict_target=[ReviewSegment.id],
|
||||
update=payload,
|
||||
).execute()
|
||||
|
||||
def handle_clear_ongoing_review_segments():
|
||||
def handle_clear_ongoing_review_segments() -> None:
|
||||
ReviewSegment.update(end_time=datetime.datetime.now().timestamp()).where(
|
||||
ReviewSegment.end_time.is_null(True)
|
||||
).execute()
|
||||
|
||||
def handle_update_camera_activity():
|
||||
def handle_update_camera_activity() -> None:
|
||||
self.camera_activity.update_activity(payload)
|
||||
|
||||
def handle_update_event_description():
|
||||
def handle_update_audio_activity() -> None:
|
||||
self.audio_activity.update_activity(payload)
|
||||
|
||||
def handle_expire_audio_activity() -> None:
|
||||
self.audio_activity.expire_all(payload)
|
||||
|
||||
def handle_update_event_description() -> None:
|
||||
event: Event = Event.get(Event.id == payload["id"])
|
||||
event.data["description"] = payload["description"]
|
||||
cast(dict, event.data)["description"] = payload["description"]
|
||||
event.save()
|
||||
self.publish(
|
||||
"tracked_object_update",
|
||||
@ -140,31 +160,48 @@ class Dispatcher:
|
||||
),
|
||||
)
|
||||
|
||||
def handle_update_model_state():
|
||||
def handle_update_review_description() -> None:
|
||||
final_data = payload["after"]
|
||||
ReviewSegment.insert(final_data).on_conflict(
|
||||
conflict_target=[ReviewSegment.id],
|
||||
update=final_data,
|
||||
).execute()
|
||||
self.publish("reviews", json.dumps(payload))
|
||||
|
||||
def handle_update_model_state() -> None:
|
||||
if payload:
|
||||
model = payload["model"]
|
||||
state = payload["state"]
|
||||
self.model_state[model] = ModelStatusTypesEnum[state]
|
||||
self.publish("model_state", json.dumps(self.model_state))
|
||||
|
||||
def handle_model_state():
|
||||
def handle_model_state() -> None:
|
||||
self.publish("model_state", json.dumps(self.model_state.copy()))
|
||||
|
||||
def handle_update_embeddings_reindex_progress():
|
||||
def handle_update_embeddings_reindex_progress() -> None:
|
||||
self.embeddings_reindex = payload
|
||||
self.publish(
|
||||
"embeddings_reindex_progress",
|
||||
json.dumps(payload),
|
||||
)
|
||||
|
||||
def handle_embeddings_reindex_progress():
|
||||
def handle_embeddings_reindex_progress() -> None:
|
||||
self.publish(
|
||||
"embeddings_reindex_progress",
|
||||
json.dumps(self.embeddings_reindex.copy()),
|
||||
)
|
||||
|
||||
def handle_on_connect():
|
||||
def handle_update_birdseye_layout() -> None:
|
||||
if payload:
|
||||
self.birdseye_layout = payload
|
||||
self.publish("birdseye_layout", json.dumps(self.birdseye_layout))
|
||||
|
||||
def handle_birdseye_layout() -> None:
|
||||
self.publish("birdseye_layout", json.dumps(self.birdseye_layout.copy()))
|
||||
|
||||
def handle_on_connect() -> None:
|
||||
camera_status = self.camera_activity.last_camera_activity.copy()
|
||||
audio_detections = self.audio_activity.current_audio_detections.copy()
|
||||
cameras_with_status = camera_status.keys()
|
||||
|
||||
for camera in self.config.cameras.keys():
|
||||
@ -177,6 +214,9 @@ class Dispatcher:
|
||||
"snapshots": self.config.cameras[camera].snapshots.enabled,
|
||||
"record": self.config.cameras[camera].record.enabled,
|
||||
"audio": self.config.cameras[camera].audio.enabled,
|
||||
"audio_transcription": self.config.cameras[
|
||||
camera
|
||||
].audio_transcription.live_enabled,
|
||||
"notifications": self.config.cameras[camera].notifications.enabled,
|
||||
"notifications_suspended": int(
|
||||
self.web_push_client.suspended_cameras.get(camera, 0)
|
||||
@ -189,6 +229,12 @@ class Dispatcher:
|
||||
].onvif.autotracking.enabled,
|
||||
"alerts": self.config.cameras[camera].review.alerts.enabled,
|
||||
"detections": self.config.cameras[camera].review.detections.enabled,
|
||||
"object_descriptions": self.config.cameras[
|
||||
camera
|
||||
].objects.genai.enabled,
|
||||
"review_descriptions": self.config.cameras[
|
||||
camera
|
||||
].review.genai.enabled,
|
||||
}
|
||||
|
||||
self.publish("camera_activity", json.dumps(camera_status))
|
||||
@ -197,8 +243,10 @@ class Dispatcher:
|
||||
"embeddings_reindex_progress",
|
||||
json.dumps(self.embeddings_reindex.copy()),
|
||||
)
|
||||
self.publish("birdseye_layout", json.dumps(self.birdseye_layout.copy()))
|
||||
self.publish("audio_detections", json.dumps(audio_detections))
|
||||
|
||||
def handle_notification_test():
|
||||
def handle_notification_test() -> None:
|
||||
self.publish("notification_test", "Test notification")
|
||||
|
||||
# Dictionary mapping topic to handlers
|
||||
@ -209,13 +257,18 @@ class Dispatcher:
|
||||
UPSERT_REVIEW_SEGMENT: handle_upsert_review_segment,
|
||||
CLEAR_ONGOING_REVIEW_SEGMENTS: handle_clear_ongoing_review_segments,
|
||||
UPDATE_CAMERA_ACTIVITY: handle_update_camera_activity,
|
||||
UPDATE_AUDIO_ACTIVITY: handle_update_audio_activity,
|
||||
EXPIRE_AUDIO_ACTIVITY: handle_expire_audio_activity,
|
||||
UPDATE_EVENT_DESCRIPTION: handle_update_event_description,
|
||||
UPDATE_REVIEW_DESCRIPTION: handle_update_review_description,
|
||||
UPDATE_MODEL_STATE: handle_update_model_state,
|
||||
UPDATE_EMBEDDINGS_REINDEX_PROGRESS: handle_update_embeddings_reindex_progress,
|
||||
UPDATE_BIRDSEYE_LAYOUT: handle_update_birdseye_layout,
|
||||
NOTIFICATION_TEST: handle_notification_test,
|
||||
"restart": handle_restart,
|
||||
"embeddingsReindexProgress": handle_embeddings_reindex_progress,
|
||||
"modelState": handle_model_state,
|
||||
"birdseyeLayout": handle_birdseye_layout,
|
||||
"onConnect": handle_on_connect,
|
||||
}
|
||||
|
||||
@ -243,11 +296,12 @@ class Dispatcher:
|
||||
logger.error(
|
||||
f"Received invalid {topic.split('/')[-1]} command: {topic}"
|
||||
)
|
||||
return
|
||||
return None
|
||||
elif topic in topic_handlers:
|
||||
return topic_handlers[topic]()
|
||||
else:
|
||||
self.publish(topic, payload, retain=False)
|
||||
return None
|
||||
|
||||
def publish(self, topic: str, payload: Any, retain: bool = False) -> None:
|
||||
"""Handle publishing to communicators."""
|
||||
@ -273,8 +327,11 @@ class Dispatcher:
|
||||
f"Turning on motion for {camera_name} due to detection being enabled."
|
||||
)
|
||||
motion_settings.enabled = True
|
||||
self.config_updater.publish(
|
||||
f"config/motion/{camera_name}", motion_settings
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(
|
||||
CameraConfigUpdateEnum.motion, camera_name
|
||||
),
|
||||
motion_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/motion/state", payload, retain=True)
|
||||
elif payload == "OFF":
|
||||
@ -282,7 +339,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off detection for {camera_name}")
|
||||
detect_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/detect/{camera_name}", detect_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.detect, camera_name),
|
||||
detect_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/detect/state", payload, retain=True)
|
||||
|
||||
def _on_enabled_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -303,7 +363,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off camera {camera_name}")
|
||||
camera_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/enabled/{camera_name}", camera_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.enabled, camera_name),
|
||||
camera_settings.enabled,
|
||||
)
|
||||
self.publish(f"{camera_name}/enabled/state", payload, retain=True)
|
||||
|
||||
def _on_motion_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -326,7 +389,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off motion for {camera_name}")
|
||||
motion_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/motion/{camera_name}", motion_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.motion, camera_name),
|
||||
motion_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/motion/state", payload, retain=True)
|
||||
|
||||
def _on_motion_improve_contrast_command(
|
||||
@ -338,13 +404,16 @@ class Dispatcher:
|
||||
if payload == "ON":
|
||||
if not motion_settings.improve_contrast:
|
||||
logger.info(f"Turning on improve contrast for {camera_name}")
|
||||
motion_settings.improve_contrast = True # type: ignore[union-attr]
|
||||
motion_settings.improve_contrast = True
|
||||
elif payload == "OFF":
|
||||
if motion_settings.improve_contrast:
|
||||
logger.info(f"Turning off improve contrast for {camera_name}")
|
||||
motion_settings.improve_contrast = False # type: ignore[union-attr]
|
||||
motion_settings.improve_contrast = False
|
||||
|
||||
self.config_updater.publish(f"config/motion/{camera_name}", motion_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.motion, camera_name),
|
||||
motion_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/improve_contrast/state", payload, retain=True)
|
||||
|
||||
def _on_ptz_autotracker_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -383,8 +452,11 @@ class Dispatcher:
|
||||
|
||||
motion_settings = self.config.cameras[camera_name].motion
|
||||
logger.info(f"Setting motion contour area for {camera_name}: {payload}")
|
||||
motion_settings.contour_area = payload # type: ignore[union-attr]
|
||||
self.config_updater.publish(f"config/motion/{camera_name}", motion_settings)
|
||||
motion_settings.contour_area = payload
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.motion, camera_name),
|
||||
motion_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/motion_contour_area/state", payload, retain=True)
|
||||
|
||||
def _on_motion_threshold_command(self, camera_name: str, payload: int) -> None:
|
||||
@ -397,8 +469,11 @@ class Dispatcher:
|
||||
|
||||
motion_settings = self.config.cameras[camera_name].motion
|
||||
logger.info(f"Setting motion threshold for {camera_name}: {payload}")
|
||||
motion_settings.threshold = payload # type: ignore[union-attr]
|
||||
self.config_updater.publish(f"config/motion/{camera_name}", motion_settings)
|
||||
motion_settings.threshold = payload
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.motion, camera_name),
|
||||
motion_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/motion_threshold/state", payload, retain=True)
|
||||
|
||||
def _on_global_notification_command(self, payload: str) -> None:
|
||||
@ -409,9 +484,9 @@ class Dispatcher:
|
||||
|
||||
notification_settings = self.config.notifications
|
||||
logger.info(f"Setting all notifications: {payload}")
|
||||
notification_settings.enabled = payload == "ON" # type: ignore[union-attr]
|
||||
self.config_updater.publish(
|
||||
"config/notifications", {"_global_notifications": notification_settings}
|
||||
notification_settings.enabled = payload == "ON"
|
||||
self.config_updater.publisher.publish(
|
||||
"config/notifications", notification_settings
|
||||
)
|
||||
self.publish("notifications/state", payload, retain=True)
|
||||
|
||||
@ -434,9 +509,43 @@ class Dispatcher:
|
||||
logger.info(f"Turning off audio detection for {camera_name}")
|
||||
audio_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/audio/{camera_name}", audio_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.audio, camera_name),
|
||||
audio_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/audio/state", payload, retain=True)
|
||||
|
||||
def _on_audio_transcription_command(self, camera_name: str, payload: str) -> None:
|
||||
"""Callback for live audio transcription topic."""
|
||||
audio_transcription_settings = self.config.cameras[
|
||||
camera_name
|
||||
].audio_transcription
|
||||
|
||||
if payload == "ON":
|
||||
if not self.config.cameras[
|
||||
camera_name
|
||||
].audio_transcription.enabled_in_config:
|
||||
logger.error(
|
||||
"Audio transcription must be enabled in the config to be turned on via MQTT."
|
||||
)
|
||||
return
|
||||
|
||||
if not audio_transcription_settings.live_enabled:
|
||||
logger.info(f"Turning on live audio transcription for {camera_name}")
|
||||
audio_transcription_settings.live_enabled = True
|
||||
elif payload == "OFF":
|
||||
if audio_transcription_settings.live_enabled:
|
||||
logger.info(f"Turning off live audio transcription for {camera_name}")
|
||||
audio_transcription_settings.live_enabled = False
|
||||
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(
|
||||
CameraConfigUpdateEnum.audio_transcription, camera_name
|
||||
),
|
||||
audio_transcription_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/audio_transcription/state", payload, retain=True)
|
||||
|
||||
def _on_recordings_command(self, camera_name: str, payload: str) -> None:
|
||||
"""Callback for recordings topic."""
|
||||
record_settings = self.config.cameras[camera_name].record
|
||||
@ -456,7 +565,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off recordings for {camera_name}")
|
||||
record_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/record/{camera_name}", record_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.record, camera_name),
|
||||
record_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/recordings/state", payload, retain=True)
|
||||
|
||||
def _on_snapshots_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -472,6 +584,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off snapshots for {camera_name}")
|
||||
snapshots_settings.enabled = False
|
||||
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.snapshots, camera_name),
|
||||
snapshots_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/snapshots/state", payload, retain=True)
|
||||
|
||||
def _on_ptz_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -506,7 +622,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off birdseye for {camera_name}")
|
||||
birdseye_settings.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/birdseye/{camera_name}", birdseye_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.birdseye, camera_name),
|
||||
birdseye_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/birdseye/state", payload, retain=True)
|
||||
|
||||
def _on_birdseye_mode_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -527,7 +646,10 @@ class Dispatcher:
|
||||
f"Setting birdseye mode for {camera_name} to {birdseye_settings.mode}"
|
||||
)
|
||||
|
||||
self.config_updater.publish(f"config/birdseye/{camera_name}", birdseye_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.birdseye, camera_name),
|
||||
birdseye_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/birdseye_mode/state", payload, retain=True)
|
||||
|
||||
def _on_camera_notification_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -559,8 +681,9 @@ class Dispatcher:
|
||||
):
|
||||
self.web_push_client.suspended_cameras[camera_name] = 0
|
||||
|
||||
self.config_updater.publish(
|
||||
"config/notifications", {camera_name: notification_settings}
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.notifications, camera_name),
|
||||
notification_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/notifications/state", payload, retain=True)
|
||||
self.publish(f"{camera_name}/notifications/suspended", "0", retain=True)
|
||||
@ -617,7 +740,10 @@ class Dispatcher:
|
||||
logger.info(f"Turning off alerts for {camera_name}")
|
||||
review_settings.alerts.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/review/{camera_name}", review_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.review, camera_name),
|
||||
review_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/review_alerts/state", payload, retain=True)
|
||||
|
||||
def _on_detections_command(self, camera_name: str, payload: str) -> None:
|
||||
@ -639,5 +765,58 @@ class Dispatcher:
|
||||
logger.info(f"Turning off detections for {camera_name}")
|
||||
review_settings.detections.enabled = False
|
||||
|
||||
self.config_updater.publish(f"config/review/{camera_name}", review_settings)
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.review, camera_name),
|
||||
review_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/review_detections/state", payload, retain=True)
|
||||
|
||||
def _on_object_description_command(self, camera_name: str, payload: str) -> None:
|
||||
"""Callback for object description topic."""
|
||||
genai_settings = self.config.cameras[camera_name].objects.genai
|
||||
|
||||
if payload == "ON":
|
||||
if not self.config.cameras[camera_name].objects.genai.enabled_in_config:
|
||||
logger.error(
|
||||
"GenAI must be enabled in the config to be turned on via MQTT."
|
||||
)
|
||||
return
|
||||
|
||||
if not genai_settings.enabled:
|
||||
logger.info(f"Turning on object descriptions for {camera_name}")
|
||||
genai_settings.enabled = True
|
||||
elif payload == "OFF":
|
||||
if genai_settings.enabled:
|
||||
logger.info(f"Turning off object descriptions for {camera_name}")
|
||||
genai_settings.enabled = False
|
||||
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.object_genai, camera_name),
|
||||
genai_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/object_descriptions/state", payload, retain=True)
|
||||
|
||||
def _on_review_description_command(self, camera_name: str, payload: str) -> None:
|
||||
"""Callback for review description topic."""
|
||||
genai_settings = self.config.cameras[camera_name].review.genai
|
||||
|
||||
if payload == "ON":
|
||||
if not self.config.cameras[camera_name].review.genai.enabled_in_config:
|
||||
logger.error(
|
||||
"GenAI Alerts or Detections must be enabled in the config to be turned on via MQTT."
|
||||
)
|
||||
return
|
||||
|
||||
if not genai_settings.enabled:
|
||||
logger.info(f"Turning on review descriptions for {camera_name}")
|
||||
genai_settings.enabled = True
|
||||
elif payload == "OFF":
|
||||
if genai_settings.enabled:
|
||||
logger.info(f"Turning off review descriptions for {camera_name}")
|
||||
genai_settings.enabled = False
|
||||
|
||||
self.config_updater.publish_update(
|
||||
CameraConfigUpdateTopic(CameraConfigUpdateEnum.review_genai, camera_name),
|
||||
genai_settings,
|
||||
)
|
||||
self.publish(f"{camera_name}/review_descriptions/state", payload, retain=True)
|
||||
|
||||
@ -1,23 +1,36 @@
|
||||
"""Facilitates communication between processes."""
|
||||
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import Any, Callable
|
||||
|
||||
import zmq
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SOCKET_REP_REQ = "ipc:///tmp/cache/embeddings"
|
||||
|
||||
|
||||
class EmbeddingsRequestEnum(Enum):
|
||||
# audio
|
||||
transcribe_audio = "transcribe_audio"
|
||||
# custom classification
|
||||
reload_classification_model = "reload_classification_model"
|
||||
# face
|
||||
clear_face_classifier = "clear_face_classifier"
|
||||
embed_description = "embed_description"
|
||||
embed_thumbnail = "embed_thumbnail"
|
||||
generate_search = "generate_search"
|
||||
recognize_face = "recognize_face"
|
||||
register_face = "register_face"
|
||||
reprocess_face = "reprocess_face"
|
||||
reprocess_plate = "reprocess_plate"
|
||||
# semantic search
|
||||
embed_description = "embed_description"
|
||||
embed_thumbnail = "embed_thumbnail"
|
||||
generate_search = "generate_search"
|
||||
reindex = "reindex"
|
||||
# LPR
|
||||
reprocess_plate = "reprocess_plate"
|
||||
# Review Descriptions
|
||||
summarize_review = "summarize_review"
|
||||
|
||||
|
||||
class EmbeddingsResponder:
|
||||
@ -34,9 +47,16 @@ class EmbeddingsResponder:
|
||||
break
|
||||
|
||||
try:
|
||||
(topic, value) = self.socket.recv_json(flags=zmq.NOBLOCK)
|
||||
raw = self.socket.recv_json(flags=zmq.NOBLOCK)
|
||||
|
||||
response = process(topic, value)
|
||||
if isinstance(raw, list):
|
||||
(topic, value) = raw
|
||||
response = process(topic, value)
|
||||
else:
|
||||
logging.warning(
|
||||
f"Received unexpected data type in ZMQ recv_json: {type(raw)}"
|
||||
)
|
||||
response = None
|
||||
|
||||
if response is not None:
|
||||
self.socket.send_json(response)
|
||||
@ -58,7 +78,7 @@ class EmbeddingsRequestor:
|
||||
self.socket = self.context.socket(zmq.REQ)
|
||||
self.socket.connect(SOCKET_REP_REQ)
|
||||
|
||||
def send_data(self, topic: str, data: Any) -> str:
|
||||
def send_data(self, topic: str, data: Any) -> Any:
|
||||
"""Sends data and then waits for reply."""
|
||||
try:
|
||||
self.socket.send_json((topic, data))
|
||||
|
||||
@ -15,7 +15,7 @@ class EventMetadataTypeEnum(str, Enum):
|
||||
manual_event_end = "manual_event_end"
|
||||
regenerate_description = "regenerate_description"
|
||||
sub_label = "sub_label"
|
||||
recognized_license_plate = "recognized_license_plate"
|
||||
attribute = "attribute"
|
||||
lpr_event_create = "lpr_event_create"
|
||||
save_lpr_snapshot = "save_lpr_snapshot"
|
||||
|
||||
@ -28,8 +28,8 @@ class EventMetadataPublisher(Publisher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def publish(self, topic: EventMetadataTypeEnum, payload: Any) -> None:
|
||||
super().publish(payload, topic.value)
|
||||
def publish(self, payload: Any, sub_topic: str = "") -> None:
|
||||
super().publish(payload, sub_topic)
|
||||
|
||||
|
||||
class EventMetadataSubscriber(Subscriber):
|
||||
@ -40,9 +40,10 @@ class EventMetadataSubscriber(Subscriber):
|
||||
def __init__(self, topic: EventMetadataTypeEnum) -> None:
|
||||
super().__init__(topic.value)
|
||||
|
||||
def _return_object(self, topic: str, payload: tuple) -> tuple:
|
||||
def _return_object(
|
||||
self, topic: str, payload: tuple | None
|
||||
) -> tuple[str, Any] | tuple[None, None]:
|
||||
if payload is None:
|
||||
return (None, None)
|
||||
|
||||
topic = EventMetadataTypeEnum[topic[len(self.topic_base) :]]
|
||||
return (topic, payload)
|
||||
|
||||
@ -7,7 +7,9 @@ from frigate.events.types import EventStateEnum, EventTypeEnum
|
||||
from .zmq_proxy import Publisher, Subscriber
|
||||
|
||||
|
||||
class EventUpdatePublisher(Publisher):
|
||||
class EventUpdatePublisher(
|
||||
Publisher[tuple[EventTypeEnum, EventStateEnum, str | None, str, dict[str, Any]]]
|
||||
):
|
||||
"""Publishes events (objects, audio, manual)."""
|
||||
|
||||
topic_base = "event/"
|
||||
@ -16,9 +18,11 @@ class EventUpdatePublisher(Publisher):
|
||||
super().__init__("update")
|
||||
|
||||
def publish(
|
||||
self, payload: tuple[EventTypeEnum, EventStateEnum, str, str, dict[str, Any]]
|
||||
self,
|
||||
payload: tuple[EventTypeEnum, EventStateEnum, str | None, str, dict[str, Any]],
|
||||
sub_topic: str = "",
|
||||
) -> None:
|
||||
super().publish(payload)
|
||||
super().publish(payload, sub_topic)
|
||||
|
||||
|
||||
class EventUpdateSubscriber(Subscriber):
|
||||
@ -30,7 +34,9 @@ class EventUpdateSubscriber(Subscriber):
|
||||
super().__init__("update")
|
||||
|
||||
|
||||
class EventEndPublisher(Publisher):
|
||||
class EventEndPublisher(
|
||||
Publisher[tuple[EventTypeEnum, EventStateEnum, str, dict[str, Any]]]
|
||||
):
|
||||
"""Publishes events that have ended."""
|
||||
|
||||
topic_base = "event/"
|
||||
@ -39,9 +45,11 @@ class EventEndPublisher(Publisher):
|
||||
super().__init__("finalized")
|
||||
|
||||
def publish(
|
||||
self, payload: tuple[EventTypeEnum, EventStateEnum, str, dict[str, Any]]
|
||||
self,
|
||||
payload: tuple[EventTypeEnum, EventStateEnum, str, dict[str, Any]],
|
||||
sub_topic: str = "",
|
||||
) -> None:
|
||||
super().publish(payload)
|
||||
super().publish(payload, sub_topic)
|
||||
|
||||
|
||||
class EventEndSubscriber(Subscriber):
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
"""Facilitates communication between processes."""
|
||||
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import threading
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
@ -9,6 +10,8 @@ import zmq
|
||||
|
||||
from frigate.comms.base_communicator import Communicator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SOCKET_REP_REQ = "ipc:///tmp/cache/comms"
|
||||
|
||||
|
||||
@ -19,7 +22,7 @@ class InterProcessCommunicator(Communicator):
|
||||
self.socket.bind(SOCKET_REP_REQ)
|
||||
self.stop_event: MpEvent = mp.Event()
|
||||
|
||||
def publish(self, topic: str, payload: str, retain: bool) -> None:
|
||||
def publish(self, topic: str, payload: Any, retain: bool = False) -> None:
|
||||
"""There is no communication back to the processes."""
|
||||
pass
|
||||
|
||||
@ -37,9 +40,16 @@ class InterProcessCommunicator(Communicator):
|
||||
break
|
||||
|
||||
try:
|
||||
(topic, value) = self.socket.recv_json(flags=zmq.NOBLOCK)
|
||||
raw = self.socket.recv_json(flags=zmq.NOBLOCK)
|
||||
|
||||
response = self._dispatcher(topic, value)
|
||||
if isinstance(raw, list):
|
||||
(topic, value) = raw
|
||||
response = self._dispatcher(topic, value)
|
||||
else:
|
||||
logging.warning(
|
||||
f"Received unexpected data type in ZMQ recv_json: {type(raw)}"
|
||||
)
|
||||
response = None
|
||||
|
||||
if response is not None:
|
||||
self.socket.send_json(response)
|
||||
|
||||
@ -11,7 +11,7 @@ from frigate.config import FrigateConfig
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MqttClient(Communicator): # type: ignore[misc]
|
||||
class MqttClient(Communicator):
|
||||
"""Frigate wrapper for mqtt client."""
|
||||
|
||||
def __init__(self, config: FrigateConfig) -> None:
|
||||
@ -75,7 +75,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
)
|
||||
self.publish(
|
||||
f"{camera_name}/improve_contrast/state",
|
||||
"ON" if camera.motion.improve_contrast else "OFF", # type: ignore[union-attr]
|
||||
"ON" if camera.motion.improve_contrast else "OFF",
|
||||
retain=True,
|
||||
)
|
||||
self.publish(
|
||||
@ -85,12 +85,12 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
)
|
||||
self.publish(
|
||||
f"{camera_name}/motion_threshold/state",
|
||||
camera.motion.threshold, # type: ignore[union-attr]
|
||||
camera.motion.threshold,
|
||||
retain=True,
|
||||
)
|
||||
self.publish(
|
||||
f"{camera_name}/motion_contour_area/state",
|
||||
camera.motion.contour_area, # type: ignore[union-attr]
|
||||
camera.motion.contour_area,
|
||||
retain=True,
|
||||
)
|
||||
self.publish(
|
||||
@ -122,6 +122,16 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
"ON" if camera.review.detections.enabled_in_config else "OFF",
|
||||
retain=True,
|
||||
)
|
||||
self.publish(
|
||||
f"{camera_name}/object_descriptions/state",
|
||||
"ON" if camera.objects.genai.enabled_in_config else "OFF",
|
||||
retain=True,
|
||||
)
|
||||
self.publish(
|
||||
f"{camera_name}/review_descriptions/state",
|
||||
"ON" if camera.review.genai.enabled_in_config else "OFF",
|
||||
retain=True,
|
||||
)
|
||||
|
||||
if self.config.notifications.enabled_in_config:
|
||||
self.publish(
|
||||
@ -145,7 +155,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
client: mqtt.Client,
|
||||
userdata: Any,
|
||||
flags: Any,
|
||||
reason_code: mqtt.ReasonCode,
|
||||
reason_code: mqtt.ReasonCode, # type: ignore[name-defined]
|
||||
properties: Any,
|
||||
) -> None:
|
||||
"""Mqtt connection callback."""
|
||||
@ -177,7 +187,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
client: mqtt.Client,
|
||||
userdata: Any,
|
||||
flags: Any,
|
||||
reason_code: mqtt.ReasonCode,
|
||||
reason_code: mqtt.ReasonCode, # type: ignore[name-defined]
|
||||
properties: Any,
|
||||
) -> None:
|
||||
"""Mqtt disconnection callback."""
|
||||
@ -215,6 +225,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
"birdseye_mode",
|
||||
"review_alerts",
|
||||
"review_detections",
|
||||
"genai",
|
||||
]
|
||||
|
||||
for name in self.config.cameras.keys():
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user