Implement post processing for yolov9

This commit is contained in:
Nicolas Mowen 2025-02-10 10:52:56 -07:00
parent a831fc2bef
commit 75ef26fa11

View File

@ -1,5 +1,6 @@
import logging import logging
import cv2
import numpy as np import numpy as np
from pydantic import Field from pydantic import Field
from typing_extensions import Literal from typing_extensions import Literal
@ -54,6 +55,15 @@ class ONNXDetector(DetectionApi):
logger.info(f"ONNX: {path} loaded") logger.info(f"ONNX: {path} loaded")
def xywh2xyxy(self, x):
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y
def detect_raw(self, tensor_input: np.ndarray): def detect_raw(self, tensor_input: np.ndarray):
model_input_name = self.model.get_inputs()[0].name model_input_name = self.model.get_inputs()[0].name
tensor_output = self.model.run(None, {model_input_name: tensor_input}) tensor_output = self.model.run(None, {model_input_name: tensor_input})
@ -81,8 +91,40 @@ class ONNXDetector(DetectionApi):
return detections return detections
elif self.onnx_model_type == ModelTypeEnum.yolov9: elif self.onnx_model_type == ModelTypeEnum.yolov9:
# see https://github.com/MultimediaTechLab/YOLO/blob/main/yolo/utils/bounding_box_utils.py#L338 # see https://github.com/MultimediaTechLab/YOLO/blob/main/yolo/utils/bounding_box_utils.py#L338
logger.info(f"the output shape is {tensor_output[0][0].shape} which has {tensor_output[0][0][0]}") predictions: np.ndarray = tensor_output[0]
return np.zeros((20, 6), np.float32) predictions = np.squeeze(predictions).T
scores = np.max(predictions[:, 4:], axis=1)
predictions = predictions[scores > 0.4, :]
scores = scores[scores > 0.4]
class_ids = np.argmax(predictions[:, 4:], axis=1)
# Rescale box
boxes = predictions[:, :4]
input_shape = np.array([self.w, self.h, self.w, self.h])
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array([self.w, self.h, self.w, self.h])
boxes = boxes.astype(np.int32)
indices = cv2.dnn.NMSBoxes(
boxes, scores, score_threshold=0.4, nms_threshold=0.4
)
detections = np.zeros((20, 6), np.float32)
for i, (bbox, confidence, class_id) in enumerate(
zip(self.xywh2xyxy(boxes[indices]), scores[indices], class_ids[indices])
):
if i == 20:
break
detections[i] = [
class_id,
confidence,
bbox[0],
bbox[1],
bbox[2],
bbox[3],
]
return detections
else: else:
raise Exception( raise Exception(
f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models." f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models."