mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-18 17:14:26 +03:00
Implement post processing for yolov9
This commit is contained in:
parent
a831fc2bef
commit
75ef26fa11
@ -1,5 +1,6 @@
|
||||
import logging
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
from typing_extensions import Literal
|
||||
@ -54,6 +55,15 @@ class ONNXDetector(DetectionApi):
|
||||
|
||||
logger.info(f"ONNX: {path} loaded")
|
||||
|
||||
def xywh2xyxy(self, x):
|
||||
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
||||
y = np.copy(x)
|
||||
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
||||
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
||||
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
||||
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
||||
return y
|
||||
|
||||
def detect_raw(self, tensor_input: np.ndarray):
|
||||
model_input_name = self.model.get_inputs()[0].name
|
||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
||||
@ -81,8 +91,40 @@ class ONNXDetector(DetectionApi):
|
||||
return detections
|
||||
elif self.onnx_model_type == ModelTypeEnum.yolov9:
|
||||
# see https://github.com/MultimediaTechLab/YOLO/blob/main/yolo/utils/bounding_box_utils.py#L338
|
||||
logger.info(f"the output shape is {tensor_output[0][0].shape} which has {tensor_output[0][0][0]}")
|
||||
return np.zeros((20, 6), np.float32)
|
||||
predictions: np.ndarray = tensor_output[0]
|
||||
predictions = np.squeeze(predictions).T
|
||||
scores = np.max(predictions[:, 4:], axis=1)
|
||||
predictions = predictions[scores > 0.4, :]
|
||||
scores = scores[scores > 0.4]
|
||||
class_ids = np.argmax(predictions[:, 4:], axis=1)
|
||||
|
||||
# Rescale box
|
||||
boxes = predictions[:, :4]
|
||||
|
||||
input_shape = np.array([self.w, self.h, self.w, self.h])
|
||||
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
||||
boxes *= np.array([self.w, self.h, self.w, self.h])
|
||||
boxes = boxes.astype(np.int32)
|
||||
indices = cv2.dnn.NMSBoxes(
|
||||
boxes, scores, score_threshold=0.4, nms_threshold=0.4
|
||||
)
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
for i, (bbox, confidence, class_id) in enumerate(
|
||||
zip(self.xywh2xyxy(boxes[indices]), scores[indices], class_ids[indices])
|
||||
):
|
||||
if i == 20:
|
||||
break
|
||||
|
||||
detections[i] = [
|
||||
class_id,
|
||||
confidence,
|
||||
bbox[0],
|
||||
bbox[1],
|
||||
bbox[2],
|
||||
bbox[3],
|
||||
]
|
||||
|
||||
return detections
|
||||
else:
|
||||
raise Exception(
|
||||
f"{self.onnx_model_type} is currently not supported for rocm. See the docs for more info on supported models."
|
||||
|
||||
Loading…
Reference in New Issue
Block a user