mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 21:44:13 +03:00
Make number of classification images to be kept configurable
This commit is contained in:
parent
d5f5e93f4f
commit
755f51f1ad
@ -710,6 +710,38 @@ audio_transcription:
|
||||
# List of language codes: https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
|
||||
language: en
|
||||
|
||||
# Optional: Configuration for custom classification models
|
||||
classification:
|
||||
custom:
|
||||
# Required: name of the classification model
|
||||
model_name:
|
||||
# Optional: Enable running the model (default: shown below)
|
||||
enabled: True
|
||||
# Optional: Name of classification model (default: shown below)
|
||||
name: None
|
||||
# Optional: Classification score threshold to change the state (default: shown below)
|
||||
threshold: 0.8
|
||||
# Optional: Number of classification attempts to save in the recent classifications tab (default: shown below)
|
||||
# NOTE: Defaults to 200 for object classification and 100 for state classification if not specified
|
||||
save_attempts: None
|
||||
# Optional: Object classification configuration
|
||||
object_config:
|
||||
# Required: Object types to classify
|
||||
objects: [dog]
|
||||
# Optional: Type of classification that is applied (default: shown below)
|
||||
classification_type: sub_label
|
||||
# Optional: State classification configuration
|
||||
state_config:
|
||||
# Required: Cameras to run classification on
|
||||
cameras:
|
||||
camera_name:
|
||||
# Required: Crop of image frame on this camera to run classification on
|
||||
crop: [0, 180, 220, 400]
|
||||
# Optional: If classification should be run when motion is detected in the crop (default: shown below)
|
||||
motion: False
|
||||
# Optional: Interval to run classification on in seconds (default: shown below)
|
||||
interval: None
|
||||
|
||||
# Optional: Restream configuration
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.10)
|
||||
# NOTE: The default go2rtc API port (1984) must be used,
|
||||
|
||||
@ -105,6 +105,11 @@ class CustomClassificationConfig(FrigateBaseModel):
|
||||
threshold: float = Field(
|
||||
default=0.8, title="Classification score threshold to change the state."
|
||||
)
|
||||
save_attempts: int | None = Field(
|
||||
default=None,
|
||||
title="Number of classification attempts to save in the recent classifications tab. If not specified, defaults to 200 for object classification and 100 for state classification.",
|
||||
ge=0,
|
||||
)
|
||||
object_config: CustomClassificationObjectConfig | None = Field(default=None)
|
||||
state_config: CustomClassificationStateConfig | None = Field(default=None)
|
||||
|
||||
|
||||
@ -250,6 +250,11 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
if self.interpreter is None:
|
||||
# When interpreter is None, always save (score is 0.0, which is < 1.0)
|
||||
if self._should_save_image(camera, "unknown", 0.0):
|
||||
save_attempts = (
|
||||
self.model_config.save_attempts
|
||||
if self.model_config.save_attempts is not None
|
||||
else 100
|
||||
)
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
@ -257,6 +262,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
max_files=save_attempts,
|
||||
)
|
||||
return
|
||||
|
||||
@ -277,6 +283,11 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
detected_state = self.labelmap[best_id]
|
||||
|
||||
if self._should_save_image(camera, detected_state, score):
|
||||
save_attempts = (
|
||||
self.model_config.save_attempts
|
||||
if self.model_config.save_attempts is not None
|
||||
else 100
|
||||
)
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(frame, cv2.COLOR_RGB2BGR),
|
||||
@ -284,6 +295,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
now,
|
||||
detected_state,
|
||||
score,
|
||||
max_files=save_attempts,
|
||||
)
|
||||
|
||||
if score < self.model_config.threshold:
|
||||
@ -482,6 +494,11 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
return
|
||||
|
||||
if self.interpreter is None:
|
||||
save_attempts = (
|
||||
self.model_config.save_attempts
|
||||
if self.model_config.save_attempts is not None
|
||||
else 200
|
||||
)
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||
@ -489,6 +506,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
now,
|
||||
"unknown",
|
||||
0.0,
|
||||
max_files=save_attempts,
|
||||
)
|
||||
return
|
||||
|
||||
@ -506,6 +524,11 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
score = round(probs[best_id], 2)
|
||||
self.__update_metrics(datetime.datetime.now().timestamp() - now)
|
||||
|
||||
save_attempts = (
|
||||
self.model_config.save_attempts
|
||||
if self.model_config.save_attempts is not None
|
||||
else 200
|
||||
)
|
||||
write_classification_attempt(
|
||||
self.train_dir,
|
||||
cv2.cvtColor(crop, cv2.COLOR_RGB2BGR),
|
||||
@ -513,7 +536,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
now,
|
||||
self.labelmap[best_id],
|
||||
score,
|
||||
max_files=200,
|
||||
max_files=save_attempts,
|
||||
)
|
||||
|
||||
if score < self.model_config.threshold:
|
||||
|
||||
@ -330,7 +330,7 @@ def collect_state_classification_examples(
|
||||
1. Queries review items from specified cameras
|
||||
2. Selects 100 balanced timestamps across the data
|
||||
3. Extracts keyframes from recordings (cropped to specified regions)
|
||||
4. Selects 20 most visually distinct images
|
||||
4. Selects 24 most visually distinct images
|
||||
5. Saves them to the dataset directory
|
||||
|
||||
Args:
|
||||
@ -660,7 +660,6 @@ def collect_object_classification_examples(
|
||||
Args:
|
||||
model_name: Name of the classification model
|
||||
label: Object label to collect (e.g., "person", "car")
|
||||
cameras: List of camera names to collect examples from
|
||||
"""
|
||||
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
|
||||
temp_dir = os.path.join(dataset_dir, "temp")
|
||||
|
||||
@ -305,6 +305,7 @@ export type CustomClassificationModelConfig = {
|
||||
enabled: boolean;
|
||||
name: string;
|
||||
threshold: number;
|
||||
save_attempts?: number;
|
||||
object_config?: {
|
||||
objects: string[];
|
||||
classification_type: string;
|
||||
|
||||
Loading…
Reference in New Issue
Block a user