Detection working with ssdlite_mobilenetv2 FP16 model

This commit is contained in:
Nate Meyer 2022-08-27 09:45:53 -04:00
parent cf03f62088
commit 6e8c91dd48

View File

@ -9,49 +9,38 @@ logger = logging.getLogger(__name__)
class OvDetector(DetectionApi):
def __init__(self, det_device=None, model_path=None, num_threads=1):
def __init__(self, det_device=None, model_config=None, num_threads=1):
self.ov_core = ov.Core()
self.ov_model = self.ov_core.read_model(model_path)
self.ov_model = self.ov_core.read_model(model_config.path)
self.interpreter = self.ov_core.compile_model(
model=self.ov_model, device_name=det_device
)
logger.info(f"Model Input Shape: {self.interpreter.input().shape}")
logger.info(f"Model Output Shape: {self.interpreter.output().shape}")
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
logger.info(f"Model Output Shape: {self.interpreter.output(0).shape}")
def detect_raw(self, tensor_input):
tensor_transpose = np.reshape(tensor_input, self.interpreter.input().shape)
infer_request = self.interpreter.create_infer_request()
results = infer_request.infer([tensor_transpose])
infer_request.infer([tensor_input])
# class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
# scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
# count = int(
# self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
# # )
# class_ids = results[0, 0, :, 1]
# # class_ids = [0, 0, 1, 1]
# print(class_ids)
# scores = results
# print(scores)
results = infer_request.get_output_tensor()
detections = np.zeros((20, 6), np.float32)
# i = 0
# for object_detected in results["detection_out"][0, 0, :]:
# if object_detected[2] < 0.1 or i == 20:
# break
# detections.append(
# [
# object_detected[1],
# float(object_detected[2]),
# object_detected[3],
# object_detected[4],
# object_detected[5],
# object_detected[6],
# ]
# )
# i += 1
i = 0
for object_detected in results.data[0, 0, :]:
if object_detected[0] != -1:
logger.debug(object_detected)
if object_detected[2] < 0.1 or i == 20:
break
detections[i] = [
object_detected[1], # Label ID
float(object_detected[2]), # Confidence
object_detected[4], # y_min
object_detected[3], # x_min
object_detected[6], # y_max
object_detected[5], # x_max
]
i += 1
return detections