mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 05:24:11 +03:00
remove 1-tensor processing. add pre_process() function
This commit is contained in:
parent
1664b2f3bb
commit
6e288839be
@ -75,76 +75,80 @@ class EdgeTpuTfl(DetectionApi):
|
||||
self.min_score = 0.4
|
||||
self.max_detections = 20
|
||||
|
||||
model_type = detector_config.model.model_type
|
||||
self.model_type = detector_config.model.model_type
|
||||
self.model_requires_int8 = self.tensor_input_details[0]["dtype"] == np.int8
|
||||
|
||||
if model_type == ModelTypeEnum.yologeneric
|
||||
logger.debug(
|
||||
f"Using YOLO postprocessing for {len(self.tensor_output_details)}-tensor output"
|
||||
)
|
||||
if len(self.tensor_output_details) > 1: # expecting 2 or 3
|
||||
self.reg_max = 16 # = 64 dfl_channels // 4 # YOLO standard
|
||||
self.min_logit_value = np.log(
|
||||
self.min_score / (1 - self.min_score)
|
||||
) # for filtering
|
||||
self._generate_anchors_and_strides() # decode bounding box DFL
|
||||
self.project = np.arange(
|
||||
self.reg_max, dtype=np.float32
|
||||
) # for decoding bounding box DFL information
|
||||
if self.model_type == ModelTypeEnum.yologeneric:
|
||||
logger.debug("Using YOLO preprocessing/postprocessing")
|
||||
|
||||
# Determine YOLO tensor indices and quantization scales for
|
||||
# boxes and class_scores the tensor ordering and names are
|
||||
# not reliable, so use tensor shape to detect which tensor
|
||||
# holds boxes or class scores.
|
||||
# The tensors have shapes (B, N, C)
|
||||
# where N is the number of candidates (=2100 for 320x320)
|
||||
# this may guess wrong if the number of classes is exactly 64
|
||||
output_boxes_index = None
|
||||
output_classes_index = None
|
||||
for i, x in enumerate(self.tensor_output_details):
|
||||
# the nominal index seems to start at 1 instead of 0
|
||||
if len(x["shape"]) == 3 and x["shape"][2] == 64:
|
||||
output_boxes_index = i
|
||||
elif len(x["shape"]) == 3 and x["shape"][2] > 1:
|
||||
# require the number of classes to be more than 1
|
||||
# to differentiate from (not used) max score tensor
|
||||
output_classes_index = i
|
||||
if output_boxes_index is None or output_classes_index is None:
|
||||
logger.warning(
|
||||
"Unrecognized model output, unexpected tensor shapes."
|
||||
)
|
||||
output_classes_index = (
|
||||
0
|
||||
if (output_boxes_index is None or output_classes_index == 1)
|
||||
else 1
|
||||
) # 0 is default guess
|
||||
output_boxes_index = 1 if (output_boxes_index == 0) else 0
|
||||
|
||||
scores_details = self.tensor_output_details[output_classes_index]
|
||||
classes_count = scores_details["shape"][2]
|
||||
self.scores_tensor_index = scores_details["index"]
|
||||
self.scores_scale, self.scores_zero_point = scores_details[
|
||||
"quantization"
|
||||
]
|
||||
# calculate the quantized version of the min_score
|
||||
self.min_score_quantized = int(
|
||||
(self.min_logit_value / self.scores_scale) + self.scores_zero_point
|
||||
if len(self.tensor_output_details) not in [2,3]:
|
||||
logger.error(
|
||||
f"Invalid count of output tensors in YOLO model. Found {len(self.tensor_output_details)}, expecting 2 or 3."
|
||||
)
|
||||
self.logit_shift_to_positive_values = (
|
||||
max(
|
||||
0, math.ceil((128 + self.scores_zero_point) * self.scores_scale)
|
||||
)
|
||||
+ 1
|
||||
) # round up
|
||||
raise
|
||||
|
||||
boxes_details = self.tensor_output_details[output_boxes_index]
|
||||
self.boxes_tensor_index = boxes_details["index"]
|
||||
self.boxes_scale, self.boxes_zero_point = boxes_details["quantization"]
|
||||
self.reg_max = 16 # = 64 dfl_channels // 4 # YOLO standard
|
||||
self.min_logit_value = np.log(
|
||||
self.min_score / (1 - self.min_score)
|
||||
) # for filtering
|
||||
self._generate_anchors_and_strides() # decode bounding box DFL
|
||||
self.project = np.arange(
|
||||
self.reg_max, dtype=np.float32
|
||||
) # for decoding bounding box DFL information
|
||||
|
||||
# Determine YOLO tensor indices and quantization scales for
|
||||
# boxes and class_scores the tensor ordering and names are
|
||||
# not reliable, so use tensor shape to detect which tensor
|
||||
# holds boxes or class scores.
|
||||
# The tensors have shapes (B, N, C)
|
||||
# where N is the number of candidates (=2100 for 320x320)
|
||||
# this may guess wrong if the number of classes is exactly 64
|
||||
output_boxes_index = None
|
||||
output_classes_index = None
|
||||
for i, x in enumerate(self.tensor_output_details):
|
||||
# the nominal index seems to start at 1 instead of 0
|
||||
if len(x["shape"]) == 3 and x["shape"][2] == 64:
|
||||
output_boxes_index = i
|
||||
elif len(x["shape"]) == 3 and x["shape"][2] > 1:
|
||||
# require the number of classes to be more than 1
|
||||
# to differentiate from (not used) max score tensor
|
||||
output_classes_index = i
|
||||
if output_boxes_index is None or output_classes_index is None:
|
||||
logger.warning(
|
||||
"Unrecognized model output, unexpected tensor shapes."
|
||||
)
|
||||
output_classes_index = (
|
||||
0
|
||||
if (output_boxes_index is None or output_classes_index == 1)
|
||||
else 1
|
||||
) # 0 is default guess
|
||||
output_boxes_index = 1 if (output_boxes_index == 0) else 0
|
||||
|
||||
scores_details = self.tensor_output_details[output_classes_index]
|
||||
classes_count = scores_details["shape"][2]
|
||||
self.scores_tensor_index = scores_details["index"]
|
||||
self.scores_scale, self.scores_zero_point = scores_details[
|
||||
"quantization"
|
||||
]
|
||||
# calculate the quantized version of the min_score
|
||||
self.min_score_quantized = int(
|
||||
(self.min_logit_value / self.scores_scale) + self.scores_zero_point
|
||||
)
|
||||
self.logit_shift_to_positive_values = (
|
||||
max(
|
||||
0, math.ceil((128 + self.scores_zero_point) * self.scores_scale)
|
||||
)
|
||||
+ 1
|
||||
) # round up
|
||||
|
||||
boxes_details = self.tensor_output_details[output_boxes_index]
|
||||
self.boxes_tensor_index = boxes_details["index"]
|
||||
self.boxes_scale, self.boxes_zero_point = boxes_details["quantization"]
|
||||
|
||||
else:
|
||||
if model_type not in [ModelTypeEnum.ssd, None]:
|
||||
if self.model_type not in [ModelTypeEnum.ssd, None]:
|
||||
logger.warning(
|
||||
f"Unsupported model_type '{model_type}' for EdgeTPU detector, falling back to SSD"
|
||||
f"Unsupported model_type '{self.model_type}' for EdgeTPU detector, falling back to SSD"
|
||||
)
|
||||
logger.debug("Using SSD preprocessing/postprocessing")
|
||||
|
||||
@ -202,155 +206,133 @@ class EdgeTpuTfl(DetectionApi):
|
||||
else:
|
||||
self.output_scores_index = index
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
def pre_process(self, tensor_input):
|
||||
if self.model_requires_int8:
|
||||
tensor_input = np.bitwise_xor(tensor_input, 128).view(
|
||||
np.int8
|
||||
) # shift by -128
|
||||
return tensor_input
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
tensor_input = self.pre_process(tensor_input)
|
||||
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
|
||||
if model_type == ModelTypeEnum.yologeneric
|
||||
output_tensor_count = len(self.tensor_output_details)
|
||||
if output_tensor_count == 1:
|
||||
# Single-tensor YOLO model
|
||||
# model output is (1, NC+4, 2100) for 320x320 image size
|
||||
# boxes as xywh (normalized to [0,1])
|
||||
# followed by NC class probabilities (also [0,1])
|
||||
# BEWARE the tensor has only one quantization scale/zero_point,
|
||||
# so it should be assembled carefully to have a range of [0,1]
|
||||
outputs = []
|
||||
for output in self.tensor_output_details:
|
||||
x = self.interpreter.get_tensor(output["index"])
|
||||
scale, zero_point = output["quantization"]
|
||||
x = (x.astype(np.float32) - zero_point) * scale
|
||||
# Denormalize xywh by image size
|
||||
x[:, [0, 2]] *= self.model_width
|
||||
x[:, [1, 3]] *= self.model_height
|
||||
outputs.append(x)
|
||||
if self.model_type == ModelTypeEnum.yologeneric:
|
||||
# Multi-tensor YOLO model with (non-standard B(H*W)C output format).
|
||||
# (the comments indicate the shape of tensors,
|
||||
# using "2100" as the anchor count (for image size of 320x320),
|
||||
# "NC" as number of classes,
|
||||
# "N" as the count that survive after min-score filtering)
|
||||
# TENSOR A) class scores (1, 2100, NC) with logit values
|
||||
# TENSOR B) box coordinates (1, 2100, 64) encoded as dfl scores
|
||||
# Recommend that the model clamp the logit values in tensor (A)
|
||||
# to the range [-4,+4] to preserve precision from [2%,98%]
|
||||
# and because NMS requires the min_score parameter to be >= 0
|
||||
|
||||
return post_process_yolo(outputs, self.model_width, self.model_height)
|
||||
# don't dequantize scores data yet, wait until the low-confidence
|
||||
# candidates are filtered out from the overall result set.
|
||||
# This reduces the work and makes post-processing faster.
|
||||
# this method works with raw quantized numbers when possible,
|
||||
# which relies on the value of the scale factor to be >0.
|
||||
# This speeds up max and argmax operations.
|
||||
# Get max confidence for each detection and create the mask
|
||||
detections = np.zeros(
|
||||
(self.max_detections, 6), np.float32
|
||||
) # initialize zero results
|
||||
scores_output_quantized = self.interpreter.get_tensor(
|
||||
self.scores_tensor_index
|
||||
)[0] # (2100, NC)
|
||||
max_scores_quantized = np.max(
|
||||
scores_output_quantized, axis=1
|
||||
) # (2100,)
|
||||
mask = max_scores_quantized >= self.min_score_quantized # (2100,)
|
||||
|
||||
elif output_tensor_count in [2,3]:
|
||||
# Multi-tensor YOLO model with (non-standard B(H*W)C output format).
|
||||
# (the comments indicate the shape of tensors,
|
||||
# using "2100" as the anchor count (for image size of 320x320),
|
||||
# "NC" as number of classes,
|
||||
# "N" as the count that survive after min-score filtering)
|
||||
# TENSOR A) class scores (1, 2100, NC) with logit values
|
||||
# TENSOR B) box coordinates (1, 2100, 64) encoded as dfl scores
|
||||
# Recommend that the model clamp the logit values in tensor (A)
|
||||
# to the range [-4,+4] to preserve precision from [2%,98%]
|
||||
# and because NMS requires the min_score parameter to be >= 0
|
||||
if not np.any(mask):
|
||||
return detections # empty results
|
||||
|
||||
# don't dequantize scores data yet, wait until the low-confidence
|
||||
# candidates are filtered out from the overall result set.
|
||||
# This reduces the work and makes post-processing faster.
|
||||
# this method works with raw quantized numbers when possible,
|
||||
# which relies on the value of the scale factor to be >0.
|
||||
# This speeds up max and argmax operations.
|
||||
# Get max confidence for each detection and create the mask
|
||||
detections = np.zeros(
|
||||
(self.max_detections, 6), np.float32
|
||||
) # initialize zero results
|
||||
scores_output_quantized = self.interpreter.get_tensor(
|
||||
self.scores_tensor_index
|
||||
)[0] # (2100, NC)
|
||||
max_scores_quantized = np.max(
|
||||
scores_output_quantized, axis=1
|
||||
) # (2100,)
|
||||
mask = max_scores_quantized >= self.min_score_quantized # (2100,)
|
||||
max_scores_filtered_shiftedpositive = (
|
||||
(max_scores_quantized[mask] - self.scores_zero_point)
|
||||
* self.scores_scale
|
||||
) + self.logit_shift_to_positive_values # (N,1) shifted logit values
|
||||
scores_output_quantized_filtered = scores_output_quantized[mask]
|
||||
|
||||
if not np.any(mask):
|
||||
return detections # empty results
|
||||
# dequantize boxes. NMS needs them to be in float format
|
||||
# remove candidates with probabilities < threshold
|
||||
boxes_output_quantized_filtered = (
|
||||
self.interpreter.get_tensor(self.boxes_tensor_index)[0]
|
||||
)[mask] # (N, 64)
|
||||
boxes_output_filtered = (
|
||||
boxes_output_quantized_filtered.astype(np.float32)
|
||||
- self.boxes_zero_point
|
||||
) * self.boxes_scale
|
||||
|
||||
max_scores_filtered_shiftedpositive = (
|
||||
(max_scores_quantized[mask] - self.scores_zero_point)
|
||||
* self.scores_scale
|
||||
) + self.logit_shift_to_positive_values # (N,1) shifted logit values
|
||||
scores_output_quantized_filtered = scores_output_quantized[mask]
|
||||
# 2. Decode DFL to distances (ltrb)
|
||||
dfl_distributions = boxes_output_filtered.reshape(
|
||||
-1, 4, self.reg_max
|
||||
) # (N, 4, 16)
|
||||
|
||||
# dequantize boxes. NMS needs them to be in float format
|
||||
# remove candidates with probabilities < threshold
|
||||
boxes_output_quantized_filtered = (
|
||||
self.interpreter.get_tensor(self.boxes_tensor_index)[0]
|
||||
)[mask] # (N, 64)
|
||||
boxes_output_filtered = (
|
||||
boxes_output_quantized_filtered.astype(np.float32)
|
||||
- self.boxes_zero_point
|
||||
) * self.boxes_scale
|
||||
# Softmax over the 16 bins
|
||||
dfl_max = np.max(dfl_distributions, axis=2, keepdims=True)
|
||||
dfl_exp = np.exp(dfl_distributions - dfl_max)
|
||||
dfl_probs = dfl_exp / np.sum(
|
||||
dfl_exp, axis=2, keepdims=True
|
||||
) # (N, 4, 16)
|
||||
|
||||
# 2. Decode DFL to distances (ltrb)
|
||||
dfl_distributions = boxes_output_filtered.reshape(
|
||||
-1, 4, self.reg_max
|
||||
) # (N, 4, 16)
|
||||
# Weighted sum: (N, 4, 16) * (16,) -> (N, 4)
|
||||
distances = np.einsum("pcr,r->pc", dfl_probs, self.project)
|
||||
|
||||
# Softmax over the 16 bins
|
||||
dfl_max = np.max(dfl_distributions, axis=2, keepdims=True)
|
||||
dfl_exp = np.exp(dfl_distributions - dfl_max)
|
||||
dfl_probs = dfl_exp / np.sum(
|
||||
dfl_exp, axis=2, keepdims=True
|
||||
) # (N, 4, 16)
|
||||
# Calculate box corners in pixel coordinates
|
||||
anchors_filtered = self.anchors[mask]
|
||||
anchor_strides_filtered = self.anchor_strides[mask]
|
||||
x1y1 = (
|
||||
anchors_filtered - distances[:, [0, 1]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
x2y2 = (
|
||||
anchors_filtered + distances[:, [2, 3]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
boxes_filtered_decoded = np.concatenate((x1y1, x2y2), axis=-1) # (N, 4)
|
||||
|
||||
# Weighted sum: (N, 4, 16) * (16,) -> (N, 4)
|
||||
distances = np.einsum("pcr,r->pc", dfl_probs, self.project)
|
||||
# 9. Apply NMS. Use logit scores here to defer sigmoid()
|
||||
# until after filtering out redundant boxes
|
||||
# Shift the logit scores to be non-negative (required by cv2)
|
||||
indices = cv2.dnn.NMSBoxes(
|
||||
bboxes=boxes_filtered_decoded,
|
||||
scores=max_scores_filtered_shiftedpositive,
|
||||
score_threshold=(
|
||||
self.min_logit_value + self.logit_shift_to_positive_values
|
||||
),
|
||||
nms_threshold=0.4, # should this be a model config setting?
|
||||
)
|
||||
num_detections = len(indices)
|
||||
if num_detections == 0:
|
||||
return detections # empty results
|
||||
|
||||
# Calculate box corners in pixel coordinates
|
||||
anchors_filtered = self.anchors[mask]
|
||||
anchor_strides_filtered = self.anchor_strides[mask]
|
||||
x1y1 = (
|
||||
anchors_filtered - distances[:, [0, 1]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
x2y2 = (
|
||||
anchors_filtered + distances[:, [2, 3]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
boxes_filtered_decoded = np.concatenate((x1y1, x2y2), axis=-1) # (N, 4)
|
||||
nms_indices = np.array(indices, dtype=np.int32).ravel() # or .flatten()
|
||||
if num_detections > self.max_detections:
|
||||
nms_indices = nms_indices[: self.max_detections]
|
||||
num_detections = self.max_detections
|
||||
kept_logits_quantized = scores_output_quantized_filtered[nms_indices]
|
||||
class_ids_post_nms = np.argmax(kept_logits_quantized, axis=1)
|
||||
|
||||
# 9. Apply NMS. Use logit scores here to defer sigmoid()
|
||||
# until after filtering out redundant boxes
|
||||
# Shift the logit scores to be non-negative (required by cv2)
|
||||
indices = cv2.dnn.NMSBoxes(
|
||||
bboxes=boxes_filtered_decoded,
|
||||
scores=max_scores_filtered_shiftedpositive,
|
||||
score_threshold=(
|
||||
self.min_logit_value + self.logit_shift_to_positive_values
|
||||
),
|
||||
nms_threshold=0.4, # should this be a model config setting?
|
||||
)
|
||||
num_detections = len(indices)
|
||||
if num_detections == 0:
|
||||
return detections # empty results
|
||||
# Extract the final boxes and scores using fancy indexing
|
||||
final_boxes = boxes_filtered_decoded[nms_indices]
|
||||
final_scores_logits = (
|
||||
max_scores_filtered_shiftedpositive[nms_indices]
|
||||
- self.logit_shift_to_positive_values
|
||||
) # Unshifted logits
|
||||
|
||||
nms_indices = np.array(indices, dtype=np.int32).ravel() # or .flatten()
|
||||
if num_detections > self.max_detections:
|
||||
nms_indices = nms_indices[: self.max_detections]
|
||||
num_detections = self.max_detections
|
||||
kept_logits_quantized = scores_output_quantized_filtered[nms_indices]
|
||||
class_ids_post_nms = np.argmax(kept_logits_quantized, axis=1)
|
||||
|
||||
# Extract the final boxes and scores using fancy indexing
|
||||
final_boxes = boxes_filtered_decoded[nms_indices]
|
||||
final_scores_logits = (
|
||||
max_scores_filtered_shiftedpositive[nms_indices]
|
||||
- self.logit_shift_to_positive_values
|
||||
) # Unshifted logits
|
||||
|
||||
# Detections array format: [class_id, score, ymin, xmin, ymax, xmax]
|
||||
detections[:num_detections, 0] = class_ids_post_nms
|
||||
detections[:num_detections, 1] = 1.0 / (
|
||||
1.0 + np.exp(-final_scores_logits)
|
||||
) # sigmoid
|
||||
detections[:num_detections, 2] = final_boxes[:, 1] / self.model_height
|
||||
detections[:num_detections, 3] = final_boxes[:, 0] / self.model_width
|
||||
detections[:num_detections, 4] = final_boxes[:, 3] / self.model_height
|
||||
detections[:num_detections, 5] = final_boxes[:, 2] / self.model_width
|
||||
return detections
|
||||
|
||||
else:
|
||||
logger.error(
|
||||
f"Invalid count of output tensors in YOLO model. Found {output_tensor_count}, expecting 1/2/3."
|
||||
)
|
||||
raise
|
||||
# Detections array format: [class_id, score, ymin, xmin, ymax, xmax]
|
||||
detections[:num_detections, 0] = class_ids_post_nms
|
||||
detections[:num_detections, 1] = 1.0 / (
|
||||
1.0 + np.exp(-final_scores_logits)
|
||||
) # sigmoid
|
||||
detections[:num_detections, 2] = final_boxes[:, 1] / self.model_height
|
||||
detections[:num_detections, 3] = final_boxes[:, 0] / self.model_width
|
||||
detections[:num_detections, 4] = final_boxes[:, 3] / self.model_height
|
||||
detections[:num_detections, 5] = final_boxes[:, 2] / self.model_width
|
||||
return detections
|
||||
|
||||
else:
|
||||
# Default SSD model
|
||||
|
||||
Loading…
Reference in New Issue
Block a user