diff --git a/.cspell/frigate-dictionary.txt b/.cspell/frigate-dictionary.txt index 6c0e8022f..0cbcc4beb 100644 --- a/.cspell/frigate-dictionary.txt +++ b/.cspell/frigate-dictionary.txt @@ -212,6 +212,7 @@ rcond RDONLY rebranded referer +reindex Reolink restream restreamed diff --git a/docs/docs/configuration/reference.md b/docs/docs/configuration/reference.md index 66e49fb7f..604791621 100644 --- a/docs/docs/configuration/reference.md +++ b/docs/docs/configuration/reference.md @@ -518,8 +518,9 @@ semantic_search: enabled: False # Optional: Re-index embeddings database from historical tracked objects (default: shown below) reindex: False - # Optional: Set device used to run embeddings, options are AUTO, CPU, GPU. (default: shown below) - device: "AUTO" + # Optional: Set the model size used for embeddings. (default: shown below) + # NOTE: small model runs on CPU and large model runs on GPU + model_size: "small" # Optional: Configuration for AI generated tracked object descriptions # NOTE: Semantic Search must be enabled for this to do anything. diff --git a/docs/docs/configuration/semantic_search.md b/docs/docs/configuration/semantic_search.md index 7cb8ca769..a569e8f1a 100644 --- a/docs/docs/configuration/semantic_search.md +++ b/docs/docs/configuration/semantic_search.md @@ -29,15 +29,26 @@ If you are enabling the Search feature for the first time, be advised that Friga ### Jina AI CLIP +The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails. + +The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions. + +Differently weighted CLIP models are available and can be selected by setting the `model_size` config option: + :::tip The CLIP models are downloaded in ONNX format, which means they will be accelerated using GPU hardware when available. This depends on the Docker build that is used. See [the object detector docs](../configuration/object_detectors.md) for more information. ::: -The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails. +```yaml +semantic_search: + enabled: True + model_size: small +``` -The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions. +- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable. +- Configuring the `small` model employs a quantized version of the model that uses much less RAM and runs faster on CPU with a very negligible difference in embedding quality. ## Usage diff --git a/frigate/api/defs/events_body.py b/frigate/api/defs/events_body.py index 7aef87433..ca1256598 100644 --- a/frigate/api/defs/events_body.py +++ b/frigate/api/defs/events_body.py @@ -11,9 +11,7 @@ class EventsSubLabelBody(BaseModel): class EventsDescriptionBody(BaseModel): - description: Union[str, None] = Field( - title="The description of the event", min_length=1 - ) + description: Union[str, None] = Field(title="The description of the event") class EventsCreateBody(BaseModel): diff --git a/frigate/api/event.py b/frigate/api/event.py index 3be37539d..c716bba13 100644 --- a/frigate/api/event.py +++ b/frigate/api/event.py @@ -473,12 +473,7 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends()) ) thumb_result = context.search_thumbnail(search_event) - thumb_ids = dict( - zip( - [result[0] for result in thumb_result], - context.thumb_stats.normalize([result[1] for result in thumb_result]), - ) - ) + thumb_ids = {result[0]: result[1] for result in thumb_result} search_results = { event_id: {"distance": distance, "source": "thumbnail"} for event_id, distance in thumb_ids.items() @@ -486,15 +481,18 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends()) else: search_types = search_type.split(",") + # only save stats for multi-modal searches + save_stats = "thumbnail" in search_types and "description" in search_types + if "thumbnail" in search_types: thumb_result = context.search_thumbnail(query) + + thumb_distances = context.thumb_stats.normalize( + [result[1] for result in thumb_result], save_stats + ) + thumb_ids = dict( - zip( - [result[0] for result in thumb_result], - context.thumb_stats.normalize( - [result[1] for result in thumb_result] - ), - ) + zip([result[0] for result in thumb_result], thumb_distances) ) search_results.update( { @@ -505,12 +503,13 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends()) if "description" in search_types: desc_result = context.search_description(query) - desc_ids = dict( - zip( - [result[0] for result in desc_result], - context.desc_stats.normalize([result[1] for result in desc_result]), - ) + + desc_distances = context.desc_stats.normalize( + [result[1] for result in desc_result], save_stats ) + + desc_ids = dict(zip([result[0] for result in desc_result], desc_distances)) + for event_id, distance in desc_ids.items(): if ( event_id not in search_results @@ -927,27 +926,19 @@ def set_description( new_description = body.description - if new_description is None or len(new_description) == 0: - return JSONResponse( - content=( - { - "success": False, - "message": "description cannot be empty", - } - ), - status_code=400, - ) - event.data["description"] = new_description event.save() # If semantic search is enabled, update the index if request.app.frigate_config.semantic_search.enabled: context: EmbeddingsContext = request.app.embeddings - context.update_description( - event_id, - new_description, - ) + if len(new_description) > 0: + context.update_description( + event_id, + new_description, + ) + else: + context.db.delete_embeddings_description(event_ids=[event_id]) response_message = ( f"Event {event_id} description is now blank" @@ -1033,8 +1024,8 @@ def delete_event(request: Request, event_id: str): # If semantic search is enabled, update the index if request.app.frigate_config.semantic_search.enabled: context: EmbeddingsContext = request.app.embeddings - context.db.delete_embeddings_thumbnail(id=[event_id]) - context.db.delete_embeddings_description(id=[event_id]) + context.db.delete_embeddings_thumbnail(event_ids=[event_id]) + context.db.delete_embeddings_description(event_ids=[event_id]) return JSONResponse( content=({"success": True, "message": "Event " + event_id + " deleted"}), status_code=200, diff --git a/frigate/app.py b/frigate/app.py index 1fcf91551..0cf76699c 100644 --- a/frigate/app.py +++ b/frigate/app.py @@ -581,12 +581,12 @@ class FrigateApp: self.init_recording_manager() self.init_review_segment_manager() self.init_go2rtc() + self.start_detectors() + self.init_embeddings_manager() self.bind_database() self.check_db_data_migrations() self.init_inter_process_communicator() self.init_dispatcher() - self.start_detectors() - self.init_embeddings_manager() self.init_embeddings_client() self.start_video_output_processor() self.start_ptz_autotracker() diff --git a/frigate/comms/dispatcher.py b/frigate/comms/dispatcher.py index 1605d645a..1f480fa9c 100644 --- a/frigate/comms/dispatcher.py +++ b/frigate/comms/dispatcher.py @@ -15,6 +15,7 @@ from frigate.const import ( INSERT_PREVIEW, REQUEST_REGION_GRID, UPDATE_CAMERA_ACTIVITY, + UPDATE_EMBEDDINGS_REINDEX_PROGRESS, UPDATE_EVENT_DESCRIPTION, UPDATE_MODEL_STATE, UPSERT_REVIEW_SEGMENT, @@ -63,6 +64,9 @@ class Dispatcher: self.onvif = onvif self.ptz_metrics = ptz_metrics self.comms = communicators + self.camera_activity = {} + self.model_state = {} + self.embeddings_reindex = {} self._camera_settings_handlers: dict[str, Callable] = { "audio": self._on_audio_command, @@ -84,37 +88,25 @@ class Dispatcher: for comm in self.comms: comm.subscribe(self._receive) - self.camera_activity = {} - self.model_state = {} - def _receive(self, topic: str, payload: str) -> Optional[Any]: """Handle receiving of payload from communicators.""" - if topic.endswith("set"): + + def handle_camera_command(command_type, camera_name, command, payload): try: - # example /cam_name/detect/set payload=ON|OFF - if topic.count("/") == 2: - camera_name = topic.split("/")[-3] - command = topic.split("/")[-2] + if command_type == "set": self._camera_settings_handlers[command](camera_name, payload) - elif topic.count("/") == 1: - command = topic.split("/")[-2] - self._global_settings_handlers[command](payload) - except IndexError: - logger.error(f"Received invalid set command: {topic}") - return - elif topic.endswith("ptz"): - try: - # example /cam_name/ptz payload=MOVE_UP|MOVE_DOWN|STOP... - camera_name = topic.split("/")[-2] - self._on_ptz_command(camera_name, payload) - except IndexError: - logger.error(f"Received invalid ptz command: {topic}") - return - elif topic == "restart": + elif command_type == "ptz": + self._on_ptz_command(camera_name, payload) + except KeyError: + logger.error(f"Invalid command type or handler: {command_type}") + + def handle_restart(): restart_frigate() - elif topic == INSERT_MANY_RECORDINGS: + + def handle_insert_many_recordings(): Recordings.insert_many(payload).execute() - elif topic == REQUEST_REGION_GRID: + + def handle_request_region_grid(): camera = payload grid = get_camera_regions_grid( camera, @@ -122,24 +114,25 @@ class Dispatcher: max(self.config.model.width, self.config.model.height), ) return grid - elif topic == INSERT_PREVIEW: + + def handle_insert_preview(): Previews.insert(payload).execute() - elif topic == UPSERT_REVIEW_SEGMENT: - ( - ReviewSegment.insert(payload) - .on_conflict( - conflict_target=[ReviewSegment.id], - update=payload, - ) - .execute() - ) - elif topic == CLEAR_ONGOING_REVIEW_SEGMENTS: - ReviewSegment.update(end_time=datetime.datetime.now().timestamp()).where( - ReviewSegment.end_time == None + + def handle_upsert_review_segment(): + ReviewSegment.insert(payload).on_conflict( + conflict_target=[ReviewSegment.id], + update=payload, ).execute() - elif topic == UPDATE_CAMERA_ACTIVITY: + + def handle_clear_ongoing_review_segments(): + ReviewSegment.update(end_time=datetime.datetime.now().timestamp()).where( + ReviewSegment.end_time.is_null(True) + ).execute() + + def handle_update_camera_activity(): self.camera_activity = payload - elif topic == UPDATE_EVENT_DESCRIPTION: + + def handle_update_event_description(): event: Event = Event.get(Event.id == payload["id"]) event.data["description"] = payload["description"] event.save() @@ -147,15 +140,31 @@ class Dispatcher: "event_update", json.dumps({"id": event.id, "description": event.data["description"]}), ) - elif topic == UPDATE_MODEL_STATE: - model = payload["model"] - state = payload["state"] - self.model_state[model] = ModelStatusTypesEnum[state] - self.publish("model_state", json.dumps(self.model_state)) - elif topic == "modelState": - model_state = self.model_state.copy() - self.publish("model_state", json.dumps(model_state)) - elif topic == "onConnect": + + def handle_update_model_state(): + if payload: + model = payload["model"] + state = payload["state"] + self.model_state[model] = ModelStatusTypesEnum[state] + self.publish("model_state", json.dumps(self.model_state)) + + def handle_model_state(): + self.publish("model_state", json.dumps(self.model_state.copy())) + + def handle_update_embeddings_reindex_progress(): + self.embeddings_reindex = payload + self.publish( + "embeddings_reindex_progress", + json.dumps(payload), + ) + + def handle_embeddings_reindex_progress(): + self.publish( + "embeddings_reindex_progress", + json.dumps(self.embeddings_reindex.copy()), + ) + + def handle_on_connect(): camera_status = self.camera_activity.copy() for camera in camera_status.keys(): @@ -170,6 +179,51 @@ class Dispatcher: } self.publish("camera_activity", json.dumps(camera_status)) + self.publish("model_state", json.dumps(self.model_state.copy())) + self.publish( + "embeddings_reindex_progress", + json.dumps(self.embeddings_reindex.copy()), + ) + + # Dictionary mapping topic to handlers + topic_handlers = { + INSERT_MANY_RECORDINGS: handle_insert_many_recordings, + REQUEST_REGION_GRID: handle_request_region_grid, + INSERT_PREVIEW: handle_insert_preview, + UPSERT_REVIEW_SEGMENT: handle_upsert_review_segment, + CLEAR_ONGOING_REVIEW_SEGMENTS: handle_clear_ongoing_review_segments, + UPDATE_CAMERA_ACTIVITY: handle_update_camera_activity, + UPDATE_EVENT_DESCRIPTION: handle_update_event_description, + UPDATE_MODEL_STATE: handle_update_model_state, + UPDATE_EMBEDDINGS_REINDEX_PROGRESS: handle_update_embeddings_reindex_progress, + "restart": handle_restart, + "embeddingsReindexProgress": handle_embeddings_reindex_progress, + "modelState": handle_model_state, + "onConnect": handle_on_connect, + } + + if topic.endswith("set") or topic.endswith("ptz"): + try: + parts = topic.split("/") + if len(parts) == 3 and topic.endswith("set"): + # example /cam_name/detect/set payload=ON|OFF + camera_name = parts[-3] + command = parts[-2] + handle_camera_command("set", camera_name, command, payload) + elif len(parts) == 2 and topic.endswith("set"): + command = parts[-2] + self._global_settings_handlers[command](payload) + elif len(parts) == 2 and topic.endswith("ptz"): + # example /cam_name/ptz payload=MOVE_UP|MOVE_DOWN|STOP... + camera_name = parts[-2] + handle_camera_command("ptz", camera_name, "", payload) + except IndexError: + logger.error( + f"Received invalid {topic.split('/')[-1]} command: {topic}" + ) + return + elif topic in topic_handlers: + return topic_handlers[topic]() else: self.publish(topic, payload, retain=False) diff --git a/frigate/comms/embeddings_updater.py b/frigate/comms/embeddings_updater.py index 8a7617630..9a13525f8 100644 --- a/frigate/comms/embeddings_updater.py +++ b/frigate/comms/embeddings_updater.py @@ -22,7 +22,7 @@ class EmbeddingsResponder: def check_for_request(self, process: Callable) -> None: while True: # load all messages that are queued - has_message, _, _ = zmq.select([self.socket], [], [], 1) + has_message, _, _ = zmq.select([self.socket], [], [], 0.1) if not has_message: break @@ -54,8 +54,11 @@ class EmbeddingsRequestor: def send_data(self, topic: str, data: any) -> str: """Sends data and then waits for reply.""" - self.socket.send_json((topic, data)) - return self.socket.recv_json() + try: + self.socket.send_json((topic, data)) + return self.socket.recv_json() + except zmq.ZMQError: + return "" def stop(self) -> None: self.socket.close() diff --git a/frigate/comms/event_metadata_updater.py b/frigate/comms/event_metadata_updater.py index aeede6d8e..87e1889ce 100644 --- a/frigate/comms/event_metadata_updater.py +++ b/frigate/comms/event_metadata_updater.py @@ -39,7 +39,7 @@ class EventMetadataSubscriber(Subscriber): super().__init__(topic) def check_for_update( - self, timeout: float = None + self, timeout: float = 1 ) -> Optional[tuple[EventMetadataTypeEnum, str, RegenerateDescriptionEnum]]: return super().check_for_update(timeout) diff --git a/frigate/comms/inter_process.py b/frigate/comms/inter_process.py index 32cec49e4..850e2435c 100644 --- a/frigate/comms/inter_process.py +++ b/frigate/comms/inter_process.py @@ -65,8 +65,11 @@ class InterProcessRequestor: def send_data(self, topic: str, data: any) -> any: """Sends data and then waits for reply.""" - self.socket.send_json((topic, data)) - return self.socket.recv_json() + try: + self.socket.send_json((topic, data)) + return self.socket.recv_json() + except zmq.ZMQError: + return "" def stop(self) -> None: self.socket.close() diff --git a/frigate/config/semantic_search.py b/frigate/config/semantic_search.py index ecdcd12d1..2891050a1 100644 --- a/frigate/config/semantic_search.py +++ b/frigate/config/semantic_search.py @@ -12,4 +12,6 @@ class SemanticSearchConfig(FrigateBaseModel): reindex: Optional[bool] = Field( default=False, title="Reindex all detections on startup." ) - device: str = Field(default="AUTO", title="Device Type") + model_size: str = Field( + default="small", title="The size of the embeddings model used." + ) diff --git a/frigate/const.py b/frigate/const.py index e8e841f4f..ad1aacd0f 100644 --- a/frigate/const.py +++ b/frigate/const.py @@ -85,6 +85,7 @@ CLEAR_ONGOING_REVIEW_SEGMENTS = "clear_ongoing_review_segments" UPDATE_CAMERA_ACTIVITY = "update_camera_activity" UPDATE_EVENT_DESCRIPTION = "update_event_description" UPDATE_MODEL_STATE = "update_model_state" +UPDATE_EMBEDDINGS_REINDEX_PROGRESS = "handle_embeddings_reindex_progress" # Stats Values diff --git a/frigate/db/sqlitevecq.py b/frigate/db/sqlitevecq.py index 858070c38..ccb75ae54 100644 --- a/frigate/db/sqlitevecq.py +++ b/frigate/db/sqlitevecq.py @@ -28,3 +28,26 @@ class SqliteVecQueueDatabase(SqliteQueueDatabase): def delete_embeddings_description(self, event_ids: list[str]) -> None: ids = ",".join(["?" for _ in event_ids]) self.execute_sql(f"DELETE FROM vec_descriptions WHERE id IN ({ids})", event_ids) + + def drop_embeddings_tables(self) -> None: + self.execute_sql(""" + DROP TABLE vec_descriptions; + """) + self.execute_sql(""" + DROP TABLE vec_thumbnails; + """) + + def create_embeddings_tables(self) -> None: + """Create vec0 virtual table for embeddings""" + self.execute_sql(""" + CREATE VIRTUAL TABLE IF NOT EXISTS vec_thumbnails USING vec0( + id TEXT PRIMARY KEY, + thumbnail_embedding FLOAT[768] distance_metric=cosine + ); + """) + self.execute_sql(""" + CREATE VIRTUAL TABLE IF NOT EXISTS vec_descriptions USING vec0( + id TEXT PRIMARY KEY, + description_embedding FLOAT[768] distance_metric=cosine + ); + """) diff --git a/frigate/detectors/detector_config.py b/frigate/detectors/detector_config.py index bc0a0ff11..90937d8f4 100644 --- a/frigate/detectors/detector_config.py +++ b/frigate/detectors/detector_config.py @@ -157,10 +157,14 @@ class ModelConfig(BaseModel): self._model_hash = file_hash.hexdigest() def create_colormap(self, enabled_labels: set[str]) -> None: - """Get a list of colors for enabled labels.""" - colors = generate_color_palette(len(enabled_labels)) - - self._colormap = {label: color for label, color in zip(enabled_labels, colors)} + """Get a list of colors for enabled labels that aren't attributes.""" + enabled_trackable_labels = list( + filter(lambda label: label not in self._all_attributes, enabled_labels) + ) + colors = generate_color_palette(len(enabled_trackable_labels)) + self._colormap = { + label: color for label, color in zip(enabled_trackable_labels, colors) + } model_config = ConfigDict(extra="forbid", protected_namespaces=()) diff --git a/frigate/detectors/plugins/openvino.py b/frigate/detectors/plugins/openvino.py index 5dc998487..51e48530b 100644 --- a/frigate/detectors/plugins/openvino.py +++ b/frigate/detectors/plugins/openvino.py @@ -3,6 +3,7 @@ import os import numpy as np import openvino as ov +import openvino.properties as props from pydantic import Field from typing_extensions import Literal @@ -34,6 +35,8 @@ class OvDetector(DetectionApi): logger.error(f"OpenVino model file {detector_config.model.path} not found.") raise FileNotFoundError + os.makedirs("/config/model_cache/openvino", exist_ok=True) + self.ov_core.set_property({props.cache_dir: "/config/model_cache/openvino"}) self.interpreter = self.ov_core.compile_model( model=detector_config.model.path, device_name=detector_config.device ) diff --git a/frigate/embeddings/__init__.py b/frigate/embeddings/__init__.py index e7dcf1053..7f2e1a10c 100644 --- a/frigate/embeddings/__init__.py +++ b/frigate/embeddings/__init__.py @@ -19,7 +19,6 @@ from frigate.models import Event from frigate.util.builtin import serialize from frigate.util.services import listen -from .embeddings import Embeddings from .maintainer import EmbeddingMaintainer from .util import ZScoreNormalization @@ -57,12 +56,6 @@ def manage_embeddings(config: FrigateConfig) -> None: models = [Event] db.bind(models) - embeddings = Embeddings(config.semantic_search, db) - - # Check if we need to re-index events - if config.semantic_search.reindex: - embeddings.reindex() - maintainer = EmbeddingMaintainer( db, config, @@ -114,19 +107,25 @@ class EmbeddingsContext: query_embedding = row[0] else: # If no embedding found, generate it and return it - query_embedding = serialize( - self.requestor.send_data( - EmbeddingsRequestEnum.embed_thumbnail.value, - {"id": query.id, "thumbnail": query.thumbnail}, - ) + data = self.requestor.send_data( + EmbeddingsRequestEnum.embed_thumbnail.value, + {"id": str(query.id), "thumbnail": str(query.thumbnail)}, ) + + if not data: + return [] + + query_embedding = serialize(data) else: - query_embedding = serialize( - self.requestor.send_data( - EmbeddingsRequestEnum.generate_search.value, query - ) + data = self.requestor.send_data( + EmbeddingsRequestEnum.generate_search.value, query ) + if not data: + return [] + + query_embedding = serialize(data) + sql_query = """ SELECT id, @@ -155,12 +154,15 @@ class EmbeddingsContext: def search_description( self, query_text: str, event_ids: list[str] = None ) -> list[tuple[str, float]]: - query_embedding = serialize( - self.requestor.send_data( - EmbeddingsRequestEnum.generate_search.value, query_text - ) + data = self.requestor.send_data( + EmbeddingsRequestEnum.generate_search.value, query_text ) + if not data: + return [] + + query_embedding = serialize(data) + # Prepare the base SQL query sql_query = """ SELECT diff --git a/frigate/embeddings/embeddings.py b/frigate/embeddings/embeddings.py index 9bcf2e6c0..cb0626f7b 100644 --- a/frigate/embeddings/embeddings.py +++ b/frigate/embeddings/embeddings.py @@ -3,14 +3,20 @@ import base64 import io import logging +import os import time +from numpy import ndarray from PIL import Image from playhouse.shortcuts import model_to_dict from frigate.comms.inter_process import InterProcessRequestor from frigate.config.semantic_search import SemanticSearchConfig -from frigate.const import UPDATE_MODEL_STATE +from frigate.const import ( + CONFIG_DIR, + UPDATE_EMBEDDINGS_REINDEX_PROGRESS, + UPDATE_MODEL_STATE, +) from frigate.db.sqlitevecq import SqliteVecQueueDatabase from frigate.models import Event from frigate.types import ModelStatusTypesEnum @@ -63,12 +69,14 @@ class Embeddings: self.requestor = InterProcessRequestor() # Create tables if they don't exist - self._create_tables() + self.db.create_embeddings_tables() models = [ "jinaai/jina-clip-v1-text_model_fp16.onnx", "jinaai/jina-clip-v1-tokenizer", - "jinaai/jina-clip-v1-vision_model_fp16.onnx", + "jinaai/jina-clip-v1-vision_model_fp16.onnx" + if config.model_size == "large" + else "jinaai/jina-clip-v1-vision_model_quantized.onnx", "jinaai/jina-clip-v1-preprocessor_config.json", ] @@ -81,12 +89,6 @@ class Embeddings: }, ) - def jina_text_embedding_function(outputs): - return outputs[0] - - def jina_vision_embedding_function(outputs): - return outputs[0] - self.text_embedding = GenericONNXEmbedding( model_name="jinaai/jina-clip-v1", model_file="text_model_fp16.onnx", @@ -94,49 +96,34 @@ class Embeddings: download_urls={ "text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx", }, - embedding_function=jina_text_embedding_function, + model_size=config.model_size, model_type="text", + requestor=self.requestor, device="CPU", ) - self.vision_embedding = GenericONNXEmbedding( - model_name="jinaai/jina-clip-v1", - model_file="vision_model_fp16.onnx", - download_urls={ - "vision_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/vision_model_fp16.onnx", - "preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/preprocessor_config.json", - }, - embedding_function=jina_vision_embedding_function, - model_type="vision", - device=self.config.device, + model_file = ( + "vision_model_fp16.onnx" + if self.config.model_size == "large" + else "vision_model_quantized.onnx" ) - def _create_tables(self): - # Create vec0 virtual table for thumbnail embeddings - self.db.execute_sql(""" - CREATE VIRTUAL TABLE IF NOT EXISTS vec_thumbnails USING vec0( - id TEXT PRIMARY KEY, - thumbnail_embedding FLOAT[768] - ); - """) + download_urls = { + model_file: f"https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/{model_file}", + "preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/preprocessor_config.json", + } - # Create vec0 virtual table for description embeddings - self.db.execute_sql(""" - CREATE VIRTUAL TABLE IF NOT EXISTS vec_descriptions USING vec0( - id TEXT PRIMARY KEY, - description_embedding FLOAT[768] - ); - """) + self.vision_embedding = GenericONNXEmbedding( + model_name="jinaai/jina-clip-v1", + model_file=model_file, + download_urls=download_urls, + model_size=config.model_size, + model_type="vision", + requestor=self.requestor, + device="GPU" if config.model_size == "large" else "CPU", + ) - def _drop_tables(self): - self.db.execute_sql(""" - DROP TABLE vec_descriptions; - """) - self.db.execute_sql(""" - DROP TABLE vec_thumbnails; - """) - - def upsert_thumbnail(self, event_id: str, thumbnail: bytes): + def upsert_thumbnail(self, event_id: str, thumbnail: bytes) -> ndarray: # Convert thumbnail bytes to PIL Image image = Image.open(io.BytesIO(thumbnail)).convert("RGB") embedding = self.vision_embedding([image])[0] @@ -151,9 +138,31 @@ class Embeddings: return embedding - def upsert_description(self, event_id: str, description: str): - embedding = self.text_embedding([description])[0] + def batch_upsert_thumbnail(self, event_thumbs: dict[str, bytes]) -> list[ndarray]: + images = [ + Image.open(io.BytesIO(thumb)).convert("RGB") + for thumb in event_thumbs.values() + ] + ids = list(event_thumbs.keys()) + embeddings = self.vision_embedding(images) + items = [] + + for i in range(len(ids)): + items.append(ids[i]) + items.append(serialize(embeddings[i])) + + self.db.execute_sql( + """ + INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding) + VALUES {} + """.format(", ".join(["(?, ?)"] * len(ids))), + items, + ) + return embeddings + + def upsert_description(self, event_id: str, description: str) -> ndarray: + embedding = self.text_embedding([description])[0] self.db.execute_sql( """ INSERT OR REPLACE INTO vec_descriptions(id, description_embedding) @@ -164,20 +173,64 @@ class Embeddings: return embedding - def reindex(self) -> None: - logger.info("Indexing event embeddings...") + def batch_upsert_description(self, event_descriptions: dict[str, str]) -> ndarray: + embeddings = self.text_embedding(list(event_descriptions.values())) + ids = list(event_descriptions.keys()) - self._drop_tables() - self._create_tables() + items = [] + + for i in range(len(ids)): + items.append(ids[i]) + items.append(serialize(embeddings[i])) + + self.db.execute_sql( + """ + INSERT OR REPLACE INTO vec_descriptions(id, description_embedding) + VALUES {} + """.format(", ".join(["(?, ?)"] * len(ids))), + items, + ) + + return embeddings + + def reindex(self) -> None: + logger.info("Indexing tracked object embeddings...") + + self.db.drop_embeddings_tables() + logger.debug("Dropped embeddings tables.") + self.db.create_embeddings_tables() + logger.debug("Created embeddings tables.") + + # Delete the saved stats file + if os.path.exists(os.path.join(CONFIG_DIR, ".search_stats.json")): + os.remove(os.path.join(CONFIG_DIR, ".search_stats.json")) st = time.time() + + # Get total count of events to process + total_events = ( + Event.select() + .where( + (Event.has_clip == True | Event.has_snapshot == True) + & Event.thumbnail.is_null(False) + ) + .count() + ) + + batch_size = 32 + current_page = 1 + totals = { - "thumb": 0, - "desc": 0, + "thumbnails": 0, + "descriptions": 0, + "processed_objects": total_events - 1 if total_events < batch_size else 0, + "total_objects": total_events, + "time_remaining": 0 if total_events < batch_size else -1, + "status": "indexing", } - batch_size = 100 - current_page = 1 + self.requestor.send_data(UPDATE_EMBEDDINGS_REINDEX_PROGRESS, totals) + events = ( Event.select() .where( @@ -190,14 +243,45 @@ class Embeddings: while len(events) > 0: event: Event + batch_thumbs = {} + batch_descs = {} for event in events: - thumbnail = base64.b64decode(event.thumbnail) - self.upsert_thumbnail(event.id, thumbnail) - totals["thumb"] += 1 - if description := event.data.get("description", "").strip(): - totals["desc"] += 1 - self.upsert_description(event.id, description) + batch_thumbs[event.id] = base64.b64decode(event.thumbnail) + totals["thumbnails"] += 1 + if description := event.data.get("description", "").strip(): + batch_descs[event.id] = description + totals["descriptions"] += 1 + + totals["processed_objects"] += 1 + + # run batch embedding + self.batch_upsert_thumbnail(batch_thumbs) + + if batch_descs: + self.batch_upsert_description(batch_descs) + + # report progress every batch so we don't spam the logs + progress = (totals["processed_objects"] / total_events) * 100 + logger.debug( + "Processed %d/%d events (%.2f%% complete) | Thumbnails: %d, Descriptions: %d", + totals["processed_objects"], + total_events, + progress, + totals["thumbnails"], + totals["descriptions"], + ) + + # Calculate time remaining + elapsed_time = time.time() - st + avg_time_per_event = elapsed_time / totals["processed_objects"] + remaining_events = total_events - totals["processed_objects"] + time_remaining = avg_time_per_event * remaining_events + totals["time_remaining"] = int(time_remaining) + + self.requestor.send_data(UPDATE_EMBEDDINGS_REINDEX_PROGRESS, totals) + + # Move to the next page current_page += 1 events = ( Event.select() @@ -211,7 +295,10 @@ class Embeddings: logger.info( "Embedded %d thumbnails and %d descriptions in %s seconds", - totals["thumb"], - totals["desc"], - time.time() - st, + totals["thumbnails"], + totals["descriptions"], + round(time.time() - st, 1), ) + totals["status"] = "completed" + + self.requestor.send_data(UPDATE_EMBEDDINGS_REINDEX_PROGRESS, totals) diff --git a/frigate/embeddings/functions/onnx.py b/frigate/embeddings/functions/onnx.py index 08901b6a2..574822d59 100644 --- a/frigate/embeddings/functions/onnx.py +++ b/frigate/embeddings/functions/onnx.py @@ -2,10 +2,9 @@ import logging import os import warnings from io import BytesIO -from typing import Callable, Dict, List, Optional, Union +from typing import Dict, List, Optional, Union import numpy as np -import onnxruntime as ort import requests from PIL import Image @@ -15,10 +14,11 @@ from PIL import Image from transformers import AutoFeatureExtractor, AutoTokenizer from transformers.utils.logging import disable_progress_bar +from frigate.comms.inter_process import InterProcessRequestor from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE from frigate.types import ModelStatusTypesEnum from frigate.util.downloader import ModelDownloader -from frigate.util.model import get_ort_providers +from frigate.util.model import ONNXModelRunner warnings.filterwarnings( "ignore", @@ -39,34 +39,49 @@ class GenericONNXEmbedding: model_name: str, model_file: str, download_urls: Dict[str, str], - embedding_function: Callable[[List[np.ndarray]], np.ndarray], + model_size: str, model_type: str, + requestor: InterProcessRequestor, tokenizer_file: Optional[str] = None, device: str = "AUTO", ): self.model_name = model_name self.model_file = model_file self.tokenizer_file = tokenizer_file + self.requestor = requestor self.download_urls = download_urls - self.embedding_function = embedding_function self.model_type = model_type # 'text' or 'vision' - self.providers, self.provider_options = get_ort_providers( - force_cpu=device == "CPU", requires_fp16=True, openvino_device=device - ) - + self.model_size = model_size + self.device = device self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name) self.tokenizer = None self.feature_extractor = None - self.session = None - - self.downloader = ModelDownloader( - model_name=self.model_name, - download_path=self.download_path, - file_names=list(self.download_urls.keys()) - + ([self.tokenizer_file] if self.tokenizer_file else []), - download_func=self._download_model, + self.runner = None + files_names = list(self.download_urls.keys()) + ( + [self.tokenizer_file] if self.tokenizer_file else [] ) - self.downloader.ensure_model_files() + + if not all( + os.path.exists(os.path.join(self.download_path, n)) for n in files_names + ): + logger.debug(f"starting model download for {self.model_name}") + self.downloader = ModelDownloader( + model_name=self.model_name, + download_path=self.download_path, + file_names=files_names, + download_func=self._download_model, + ) + self.downloader.ensure_model_files() + else: + self.downloader = None + ModelDownloader.mark_files_state( + self.requestor, + self.model_name, + files_names, + ModelStatusTypesEnum.downloaded, + ) + self._load_model_and_tokenizer() + logger.debug(f"models are already downloaded for {self.model_name}") def _download_model(self, path: str): try: @@ -101,14 +116,17 @@ class GenericONNXEmbedding: ) def _load_model_and_tokenizer(self): - if self.session is None: - self.downloader.wait_for_download() + if self.runner is None: + if self.downloader: + self.downloader.wait_for_download() if self.model_type == "text": self.tokenizer = self._load_tokenizer() else: self.feature_extractor = self._load_feature_extractor() - self.session = self._load_model( - os.path.join(self.download_path, self.model_file) + self.runner = ONNXModelRunner( + os.path.join(self.download_path, self.model_file), + self.device, + self.model_size, ) def _load_tokenizer(self): @@ -125,15 +143,6 @@ class GenericONNXEmbedding: f"{MODEL_CACHE_DIR}/{self.model_name}", ) - def _load_model(self, path: str): - if os.path.exists(path): - return ort.InferenceSession( - path, providers=self.providers, provider_options=self.provider_options - ) - else: - logger.warning(f"{self.model_name} model file {path} not found.") - return None - def _process_image(self, image): if isinstance(image, str): if image.startswith("http"): @@ -146,8 +155,7 @@ class GenericONNXEmbedding: self, inputs: Union[List[str], List[Image.Image], List[str]] ) -> List[np.ndarray]: self._load_model_and_tokenizer() - - if self.session is None or ( + if self.runner is None or ( self.tokenizer is None and self.feature_extractor is None ): logger.error( @@ -156,23 +164,37 @@ class GenericONNXEmbedding: return [] if self.model_type == "text": - processed_inputs = self.tokenizer( - inputs, padding=True, truncation=True, return_tensors="np" - ) + max_length = max(len(self.tokenizer.encode(text)) for text in inputs) + processed_inputs = [ + self.tokenizer( + text, + padding="max_length", + truncation=True, + max_length=max_length, + return_tensors="np", + ) + for text in inputs + ] else: processed_images = [self._process_image(img) for img in inputs] - processed_inputs = self.feature_extractor( - images=processed_images, return_tensors="np" - ) + processed_inputs = [ + self.feature_extractor(images=image, return_tensors="np") + for image in processed_images + ] - input_names = [input.name for input in self.session.get_inputs()] - onnx_inputs = { - name: processed_inputs[name] - for name in input_names - if name in processed_inputs - } + input_names = self.runner.get_input_names() + onnx_inputs = {name: [] for name in input_names} + input: dict[str, any] + for input in processed_inputs: + for key, value in input.items(): + if key in input_names: + onnx_inputs[key].append(value[0]) - outputs = self.session.run(None, onnx_inputs) - embeddings = self.embedding_function(outputs) + for key in input_names: + if onnx_inputs.get(key): + onnx_inputs[key] = np.stack(onnx_inputs[key]) + else: + logger.warning(f"Expected input '{key}' not found in onnx_inputs") + embeddings = self.runner.run(onnx_inputs)[0] return [embedding for embedding in embeddings] diff --git a/frigate/embeddings/maintainer.py b/frigate/embeddings/maintainer.py index 68c3e3686..c7060b9a6 100644 --- a/frigate/embeddings/maintainer.py +++ b/frigate/embeddings/maintainer.py @@ -41,10 +41,14 @@ class EmbeddingMaintainer(threading.Thread): config: FrigateConfig, stop_event: MpEvent, ) -> None: - threading.Thread.__init__(self) - self.name = "embeddings_maintainer" + super().__init__(name="embeddings_maintainer") self.config = config self.embeddings = Embeddings(config.semantic_search, db) + + # Check if we need to re-index events + if config.semantic_search.reindex: + self.embeddings.reindex() + self.event_subscriber = EventUpdateSubscriber() self.event_end_subscriber = EventEndSubscriber() self.event_metadata_subscriber = EventMetadataSubscriber( @@ -76,26 +80,33 @@ class EmbeddingMaintainer(threading.Thread): def _process_requests(self) -> None: """Process embeddings requests""" - def handle_request(topic: str, data: str) -> str: - if topic == EmbeddingsRequestEnum.embed_description.value: - return serialize( - self.embeddings.upsert_description(data["id"], data["description"]), - pack=False, - ) - elif topic == EmbeddingsRequestEnum.embed_thumbnail.value: - thumbnail = base64.b64decode(data["thumbnail"]) - return serialize( - self.embeddings.upsert_thumbnail(data["id"], thumbnail), - pack=False, - ) - elif topic == EmbeddingsRequestEnum.generate_search.value: - return serialize(self.embeddings.text_embedding([data])[0], pack=False) + def _handle_request(topic: str, data: str) -> str: + try: + if topic == EmbeddingsRequestEnum.embed_description.value: + return serialize( + self.embeddings.upsert_description( + data["id"], data["description"] + ), + pack=False, + ) + elif topic == EmbeddingsRequestEnum.embed_thumbnail.value: + thumbnail = base64.b64decode(data["thumbnail"]) + return serialize( + self.embeddings.upsert_thumbnail(data["id"], thumbnail), + pack=False, + ) + elif topic == EmbeddingsRequestEnum.generate_search.value: + return serialize( + self.embeddings.text_embedding([data])[0], pack=False + ) + except Exception as e: + logger.error(f"Unable to handle embeddings request {e}") - self.embeddings_responder.check_for_request(handle_request) + self.embeddings_responder.check_for_request(_handle_request) def _process_updates(self) -> None: """Process event updates""" - update = self.event_subscriber.check_for_update() + update = self.event_subscriber.check_for_update(timeout=0.1) if update is None: return @@ -124,7 +135,7 @@ class EmbeddingMaintainer(threading.Thread): def _process_finalized(self) -> None: """Process the end of an event.""" while True: - ended = self.event_end_subscriber.check_for_update() + ended = self.event_end_subscriber.check_for_update(timeout=0.1) if ended == None: break @@ -161,9 +172,6 @@ class EmbeddingMaintainer(threading.Thread): or set(event.zones) & set(camera_config.genai.required_zones) ) ): - logger.debug( - f"Description generation for {event}, has_snapshot: {event.has_snapshot}" - ) if event.has_snapshot and camera_config.genai.use_snapshot: with open( os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg"), @@ -217,7 +225,7 @@ class EmbeddingMaintainer(threading.Thread): def _process_event_metadata(self): # Check for regenerate description requests (topic, event_id, source) = self.event_metadata_subscriber.check_for_update( - timeout=1 + timeout=0.1 ) if topic is None: @@ -251,7 +259,7 @@ class EmbeddingMaintainer(threading.Thread): camera_config = self.config.cameras[event.camera] description = self.genai_client.generate_description( - camera_config, thumbnails, event.label + camera_config, thumbnails, event ) if not description: diff --git a/frigate/embeddings/util.py b/frigate/embeddings/util.py index 0b2acd4d6..bc1a952ec 100644 --- a/frigate/embeddings/util.py +++ b/frigate/embeddings/util.py @@ -20,10 +20,11 @@ class ZScoreNormalization: @property def stddev(self): - return math.sqrt(self.variance) + return math.sqrt(self.variance) if self.variance > 0 else 0.0 - def normalize(self, distances: list[float]): - self._update(distances) + def normalize(self, distances: list[float], save_stats: bool): + if save_stats: + self._update(distances) if self.stddev == 0: return distances return [ diff --git a/frigate/events/cleanup.py b/frigate/events/cleanup.py index 828b295b4..7d3e7c456 100644 --- a/frigate/events/cleanup.py +++ b/frigate/events/cleanup.py @@ -8,11 +8,9 @@ from enum import Enum from multiprocessing.synchronize import Event as MpEvent from pathlib import Path -from playhouse.sqliteq import SqliteQueueDatabase - from frigate.config import FrigateConfig from frigate.const import CLIPS_DIR -from frigate.embeddings.embeddings import Embeddings +from frigate.db.sqlitevecq import SqliteVecQueueDatabase from frigate.models import Event, Timeline logger = logging.getLogger(__name__) @@ -25,7 +23,7 @@ class EventCleanupType(str, Enum): class EventCleanup(threading.Thread): def __init__( - self, config: FrigateConfig, stop_event: MpEvent, db: SqliteQueueDatabase + self, config: FrigateConfig, stop_event: MpEvent, db: SqliteVecQueueDatabase ): super().__init__(name="event_cleanup") self.config = config @@ -35,9 +33,6 @@ class EventCleanup(threading.Thread): self.removed_camera_labels: list[str] = None self.camera_labels: dict[str, dict[str, any]] = {} - if self.config.semantic_search.enabled: - self.embeddings = Embeddings(self.config.semantic_search, self.db) - def get_removed_camera_labels(self) -> list[Event]: """Get a list of distinct labels for removed cameras.""" if self.removed_camera_labels is None: @@ -234,8 +229,8 @@ class EventCleanup(threading.Thread): Event.delete().where(Event.id << chunk).execute() if self.config.semantic_search.enabled: - self.embeddings.delete_description(chunk) - self.embeddings.delete_thumbnail(chunk) + self.db.delete_embeddings_description(event_ids=chunk) + self.db.delete_embeddings_thumbnail(event_ids=chunk) logger.debug(f"Deleted {len(events_to_delete)} embeddings") logger.info("Exiting event cleanup...") diff --git a/frigate/genai/__init__.py b/frigate/genai/__init__.py index caf13082d..dccb74c1d 100644 --- a/frigate/genai/__init__.py +++ b/frigate/genai/__init__.py @@ -5,6 +5,7 @@ import os from typing import Optional from frigate.config import CameraConfig, GenAIConfig, GenAIProviderEnum +from frigate.models import Event PROVIDERS = {} @@ -31,12 +32,12 @@ class GenAIClient: self, camera_config: CameraConfig, thumbnails: list[bytes], - label: str, + event: Event, ) -> Optional[str]: """Generate a description for the frame.""" prompt = camera_config.genai.object_prompts.get( - label, camera_config.genai.prompt - ).format(label=label) + event.label, camera_config.genai.prompt + ).format(**event) return self._send(prompt, thumbnails) def _init_provider(self): diff --git a/frigate/util/downloader.py b/frigate/util/downloader.py index 642dc7c8f..6685b0bb8 100644 --- a/frigate/util/downloader.py +++ b/frigate/util/downloader.py @@ -19,6 +19,13 @@ class FileLock: self.path = path self.lock_file = f"{path}.lock" + # we have not acquired the lock yet so it should not exist + if os.path.exists(self.lock_file): + try: + os.remove(self.lock_file) + except Exception: + pass + def acquire(self): parent_dir = os.path.dirname(self.lock_file) os.makedirs(parent_dir, exist_ok=True) @@ -56,14 +63,12 @@ class ModelDownloader: self.download_complete = threading.Event() def ensure_model_files(self): - for file in self.file_names: - self.requestor.send_data( - UPDATE_MODEL_STATE, - { - "model": f"{self.model_name}-{file}", - "state": ModelStatusTypesEnum.downloading, - }, - ) + self.mark_files_state( + self.requestor, + self.model_name, + self.file_names, + ModelStatusTypesEnum.downloading, + ) self.download_thread = threading.Thread( target=self._download_models, name=f"_download_model_{self.model_name}", @@ -92,6 +97,7 @@ class ModelDownloader: }, ) + self.requestor.stop() self.download_complete.set() @staticmethod @@ -119,5 +125,21 @@ class ModelDownloader: if not silent: logger.info(f"Downloading complete: {url}") + @staticmethod + def mark_files_state( + requestor: InterProcessRequestor, + model_name: str, + files: list[str], + state: ModelStatusTypesEnum, + ) -> None: + for file_name in files: + requestor.send_data( + UPDATE_MODEL_STATE, + { + "model": f"{model_name}-{file_name}", + "state": state, + }, + ) + def wait_for_download(self): self.download_complete.wait() diff --git a/frigate/util/model.py b/frigate/util/model.py index fabade387..685cd34ec 100644 --- a/frigate/util/model.py +++ b/frigate/util/model.py @@ -1,44 +1,116 @@ """Model Utils""" import os +from typing import Any import onnxruntime as ort +try: + import openvino as ov +except ImportError: + # openvino is not included + pass + def get_ort_providers( force_cpu: bool = False, openvino_device: str = "AUTO", requires_fp16: bool = False ) -> tuple[list[str], list[dict[str, any]]]: if force_cpu: - return (["CPUExecutionProvider"], [{}]) + return ( + ["CPUExecutionProvider"], + [ + { + "arena_extend_strategy": "kSameAsRequested", + } + ], + ) - providers = ort.get_available_providers() + providers = [] options = [] - for provider in providers: - if provider == "TensorrtExecutionProvider": - os.makedirs("/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True) - - if not requires_fp16 or os.environ.get("USE_FP_16", "True") != "False": - options.append( - { - "trt_fp16_enable": requires_fp16, - "trt_timing_cache_enable": True, - "trt_engine_cache_enable": True, - "trt_timing_cache_path": "/config/model_cache/tensorrt/ort", - "trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines", - } - ) - else: - options.append({}) - elif provider == "OpenVINOExecutionProvider": - os.makedirs("/config/model_cache/openvino/ort", exist_ok=True) + for provider in ort.get_available_providers(): + if provider == "CUDAExecutionProvider": + providers.append(provider) options.append( { + "arena_extend_strategy": "kSameAsRequested", + } + ) + elif provider == "TensorrtExecutionProvider": + # TensorrtExecutionProvider uses too much memory without options to control it + pass + elif provider == "OpenVINOExecutionProvider": + os.makedirs("/config/model_cache/openvino/ort", exist_ok=True) + providers.append(provider) + options.append( + { + "arena_extend_strategy": "kSameAsRequested", "cache_dir": "/config/model_cache/openvino/ort", "device_type": openvino_device, } ) + elif provider == "CPUExecutionProvider": + providers.append(provider) + options.append( + { + "arena_extend_strategy": "kSameAsRequested", + } + ) else: + providers.append(provider) options.append({}) return (providers, options) + + +class ONNXModelRunner: + """Run onnx models optimally based on available hardware.""" + + def __init__(self, model_path: str, device: str, requires_fp16: bool = False): + self.model_path = model_path + self.ort: ort.InferenceSession = None + self.ov: ov.Core = None + providers, options = get_ort_providers(device == "CPU", device, requires_fp16) + + if "OpenVINOExecutionProvider" in providers: + # use OpenVINO directly + self.type = "ov" + self.ov = ov.Core() + self.ov.set_property( + {ov.properties.cache_dir: "/config/model_cache/openvino"} + ) + self.interpreter = self.ov.compile_model( + model=model_path, device_name=device + ) + else: + # Use ONNXRuntime + self.type = "ort" + self.ort = ort.InferenceSession( + model_path, providers=providers, provider_options=options + ) + + def get_input_names(self) -> list[str]: + if self.type == "ov": + input_names = [] + + for input in self.interpreter.inputs: + input_names.extend(input.names) + + return input_names + elif self.type == "ort": + return [input.name for input in self.ort.get_inputs()] + + def run(self, input: dict[str, Any]) -> Any: + if self.type == "ov": + infer_request = self.interpreter.create_infer_request() + input_tensor = list(input.values()) + + if len(input_tensor) == 1: + input_tensor = ov.Tensor(array=input_tensor[0]) + else: + input_tensor = ov.Tensor(array=input_tensor) + + infer_request.infer(input_tensor) + return [infer_request.get_output_tensor().data] + elif self.type == "ort": + return self.ort.run(None, input) diff --git a/web/src/api/ws.tsx b/web/src/api/ws.tsx index a78722b66..2e083cf83 100644 --- a/web/src/api/ws.tsx +++ b/web/src/api/ws.tsx @@ -2,6 +2,7 @@ import { baseUrl } from "./baseUrl"; import { useCallback, useEffect, useState } from "react"; import useWebSocket, { ReadyState } from "react-use-websocket"; import { + EmbeddingsReindexProgressType, FrigateCameraState, FrigateEvent, FrigateReview, @@ -302,6 +303,42 @@ export function useModelState( return { payload: data ? data[model] : undefined }; } +export function useEmbeddingsReindexProgress( + revalidateOnFocus: boolean = true, +): { + payload: EmbeddingsReindexProgressType; +} { + const { + value: { payload }, + send: sendCommand, + } = useWs("embeddings_reindex_progress", "embeddingsReindexProgress"); + + const data = useDeepMemo(JSON.parse(payload as string)); + + useEffect(() => { + let listener = undefined; + if (revalidateOnFocus) { + sendCommand("embeddingsReindexProgress"); + listener = () => { + if (document.visibilityState == "visible") { + sendCommand("embeddingsReindexProgress"); + } + }; + addEventListener("visibilitychange", listener); + } + + return () => { + if (listener) { + removeEventListener("visibilitychange", listener); + } + }; + // we know that these deps are correct + // eslint-disable-next-line react-hooks/exhaustive-deps + }, [revalidateOnFocus]); + + return { payload: data }; +} + export function useMotionActivity(camera: string): { payload: string } { const { value: { payload }, diff --git a/web/src/components/Statusbar.tsx b/web/src/components/Statusbar.tsx index 41bd9372f..1b20b26f6 100644 --- a/web/src/components/Statusbar.tsx +++ b/web/src/components/Statusbar.tsx @@ -1,3 +1,4 @@ +import { useEmbeddingsReindexProgress } from "@/api/ws"; import { StatusBarMessagesContext, StatusMessage, @@ -41,6 +42,23 @@ export default function Statusbar() { }); }, [potentialProblems, addMessage, clearMessages]); + const { payload: reindexState } = useEmbeddingsReindexProgress(); + + useEffect(() => { + if (reindexState) { + if (reindexState.status == "indexing") { + clearMessages("embeddings-reindex"); + addMessage( + "embeddings-reindex", + `Reindexing embeddings (${Math.floor((reindexState.processed_objects / reindexState.total_objects) * 100)}% complete)`, + ); + } + if (reindexState.status === "completed") { + clearMessages("embeddings-reindex"); + } + } + }, [reindexState, addMessage, clearMessages]); + return (
+ Object Bounding Box Colors +
++ Motion Boxes +
++ Red boxes will be overlaid on areas of the frame where motion is + currently being detected +
+ > + ), }, { param: "regions", title: "Regions", description: "Show a box of the region of interest sent to the object detector", + info: ( + <> ++ Region Boxes +
++ Bright green boxes will be overlaid on areas of interest in the + frame that are being sent to the object detector. +
+ > + ), }, ]; @@ -145,19 +197,34 @@ export default function ObjectSettingsView({