mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
Add error handling for training
This commit is contained in:
parent
292d024aac
commit
6c47a131e4
@ -130,7 +130,8 @@ class ClassificationTrainingProcess(FrigateProcess):
|
||||
|
||||
def run(self) -> None:
|
||||
self.pre_run_setup()
|
||||
self.__train_classification_model()
|
||||
success = self.__train_classification_model()
|
||||
exit(0 if success else 1)
|
||||
|
||||
def __generate_representative_dataset_factory(self, dataset_dir: str):
|
||||
def generate_representative_dataset():
|
||||
@ -153,89 +154,117 @@ class ClassificationTrainingProcess(FrigateProcess):
|
||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||
def __train_classification_model(self) -> bool:
|
||||
"""Train a classification model."""
|
||||
try:
|
||||
# import in the function so that tensorflow is not initialized multiple times
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers, models, optimizers
|
||||
from tensorflow.keras.applications import MobileNetV2
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
# import in the function so that tensorflow is not initialized multiple times
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers, models, optimizers
|
||||
from tensorflow.keras.applications import MobileNetV2
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
dataset_dir = os.path.join(CLIPS_DIR, self.model_name, "dataset")
|
||||
model_dir = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
logger.info(f"Kicking off classification training for {self.model_name}.")
|
||||
dataset_dir = os.path.join(CLIPS_DIR, self.model_name, "dataset")
|
||||
model_dir = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
num_classes = len(
|
||||
[
|
||||
d
|
||||
for d in os.listdir(dataset_dir)
|
||||
if os.path.isdir(os.path.join(dataset_dir, d))
|
||||
]
|
||||
)
|
||||
num_classes = len(
|
||||
[
|
||||
d
|
||||
for d in os.listdir(dataset_dir)
|
||||
if os.path.isdir(os.path.join(dataset_dir, d))
|
||||
]
|
||||
)
|
||||
|
||||
# Start with imagenet base model with 35% of channels in each layer
|
||||
base_model = MobileNetV2(
|
||||
input_shape=(224, 224, 3),
|
||||
include_top=False,
|
||||
weights="imagenet",
|
||||
alpha=0.35,
|
||||
)
|
||||
base_model.trainable = False # Freeze pre-trained layers
|
||||
if num_classes < 2:
|
||||
logger.error(
|
||||
f"Training failed for {self.model_name}: Need at least 2 classes, found {num_classes}"
|
||||
)
|
||||
return False
|
||||
|
||||
model = models.Sequential(
|
||||
[
|
||||
base_model,
|
||||
layers.GlobalAveragePooling2D(),
|
||||
layers.Dense(128, activation="relu"),
|
||||
layers.Dropout(0.3),
|
||||
layers.Dense(num_classes, activation="softmax"),
|
||||
]
|
||||
)
|
||||
# Start with imagenet base model with 35% of channels in each layer
|
||||
base_model = MobileNetV2(
|
||||
input_shape=(224, 224, 3),
|
||||
include_top=False,
|
||||
weights="imagenet",
|
||||
alpha=0.35,
|
||||
)
|
||||
base_model.trainable = False # Freeze pre-trained layers
|
||||
|
||||
model.compile(
|
||||
optimizer=optimizers.Adam(learning_rate=LEARNING_RATE),
|
||||
loss="categorical_crossentropy",
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
model = models.Sequential(
|
||||
[
|
||||
base_model,
|
||||
layers.GlobalAveragePooling2D(),
|
||||
layers.Dense(128, activation="relu"),
|
||||
layers.Dropout(0.3),
|
||||
layers.Dense(num_classes, activation="softmax"),
|
||||
]
|
||||
)
|
||||
|
||||
# create training set
|
||||
datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2)
|
||||
train_gen = datagen.flow_from_directory(
|
||||
dataset_dir,
|
||||
target_size=(224, 224),
|
||||
batch_size=BATCH_SIZE,
|
||||
class_mode="categorical",
|
||||
subset="training",
|
||||
)
|
||||
model.compile(
|
||||
optimizer=optimizers.Adam(learning_rate=LEARNING_RATE),
|
||||
loss="categorical_crossentropy",
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
|
||||
# write labelmap
|
||||
class_indices = train_gen.class_indices
|
||||
index_to_class = {v: k for k, v in class_indices.items()}
|
||||
sorted_classes = [index_to_class[i] for i in range(len(index_to_class))]
|
||||
with open(os.path.join(model_dir, "labelmap.txt"), "w") as f:
|
||||
for class_name in sorted_classes:
|
||||
f.write(f"{class_name}\n")
|
||||
# create training set
|
||||
datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2)
|
||||
train_gen = datagen.flow_from_directory(
|
||||
dataset_dir,
|
||||
target_size=(224, 224),
|
||||
batch_size=BATCH_SIZE,
|
||||
class_mode="categorical",
|
||||
subset="training",
|
||||
)
|
||||
|
||||
# train the model
|
||||
model.fit(train_gen, epochs=EPOCHS, verbose=0)
|
||||
total_images = train_gen.samples
|
||||
logger.debug(
|
||||
f"Training {self.model_name}: {total_images} images across {num_classes} classes"
|
||||
)
|
||||
|
||||
# convert model to tflite
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
converter.representative_dataset = (
|
||||
self.__generate_representative_dataset_factory(dataset_dir)
|
||||
)
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||
converter.inference_input_type = tf.uint8
|
||||
converter.inference_output_type = tf.uint8
|
||||
tflite_model = converter.convert()
|
||||
# write labelmap
|
||||
class_indices = train_gen.class_indices
|
||||
index_to_class = {v: k for k, v in class_indices.items()}
|
||||
sorted_classes = [index_to_class[i] for i in range(len(index_to_class))]
|
||||
with open(os.path.join(model_dir, "labelmap.txt"), "w") as f:
|
||||
for class_name in sorted_classes:
|
||||
f.write(f"{class_name}\n")
|
||||
|
||||
# write model
|
||||
with open(os.path.join(model_dir, "model.tflite"), "wb") as f:
|
||||
f.write(tflite_model)
|
||||
# train the model
|
||||
logger.debug(f"Training {self.model_name} for {EPOCHS} epochs...")
|
||||
model.fit(train_gen, epochs=EPOCHS, verbose=0)
|
||||
logger.debug(f"Converting {self.model_name} to TFLite...")
|
||||
|
||||
# write training metadata with image count
|
||||
dataset_image_count = get_dataset_image_count(self.model_name)
|
||||
write_training_metadata(self.model_name, dataset_image_count)
|
||||
# convert model to tflite
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
converter.representative_dataset = (
|
||||
self.__generate_representative_dataset_factory(dataset_dir)
|
||||
)
|
||||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||||
converter.inference_input_type = tf.uint8
|
||||
converter.inference_output_type = tf.uint8
|
||||
tflite_model = converter.convert()
|
||||
|
||||
# write model
|
||||
model_path = os.path.join(model_dir, "model.tflite")
|
||||
with open(model_path, "wb") as f:
|
||||
f.write(tflite_model)
|
||||
|
||||
# verify model file was written successfully
|
||||
if not os.path.exists(model_path) or os.path.getsize(model_path) == 0:
|
||||
logger.error(
|
||||
f"Training failed for {self.model_name}: Model file was not created or is empty"
|
||||
)
|
||||
return False
|
||||
|
||||
# write training metadata with image count
|
||||
dataset_image_count = get_dataset_image_count(self.model_name)
|
||||
write_training_metadata(self.model_name, dataset_image_count)
|
||||
|
||||
logger.info(f"Finished training {self.model_name}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Training failed for {self.model_name}: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def kickoff_model_training(
|
||||
@ -257,18 +286,36 @@ def kickoff_model_training(
|
||||
training_process.start()
|
||||
training_process.join()
|
||||
|
||||
# reload model and mark training as complete
|
||||
embeddingRequestor.send_data(
|
||||
EmbeddingsRequestEnum.reload_classification_model.value,
|
||||
{"model_name": model_name},
|
||||
)
|
||||
requestor.send_data(
|
||||
UPDATE_MODEL_STATE,
|
||||
{
|
||||
"model": model_name,
|
||||
"state": ModelStatusTypesEnum.complete,
|
||||
},
|
||||
)
|
||||
# check if training succeeded by examining the exit code
|
||||
training_success = training_process.exitcode == 0
|
||||
|
||||
if training_success:
|
||||
# reload model and mark training as complete
|
||||
embeddingRequestor.send_data(
|
||||
EmbeddingsRequestEnum.reload_classification_model.value,
|
||||
{"model_name": model_name},
|
||||
)
|
||||
requestor.send_data(
|
||||
UPDATE_MODEL_STATE,
|
||||
{
|
||||
"model": model_name,
|
||||
"state": ModelStatusTypesEnum.complete,
|
||||
},
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"Training subprocess failed for {model_name} (exit code: {training_process.exitcode})"
|
||||
)
|
||||
# mark training as complete (not failed) so UI doesn't stay in training state
|
||||
# but don't reload the model since it failed
|
||||
requestor.send_data(
|
||||
UPDATE_MODEL_STATE,
|
||||
{
|
||||
"model": model_name,
|
||||
"state": ModelStatusTypesEnum.complete,
|
||||
},
|
||||
)
|
||||
|
||||
requestor.stop()
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user