mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 21:44:13 +03:00
Add error handling for training
This commit is contained in:
parent
292d024aac
commit
6c47a131e4
@ -130,7 +130,8 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
|
|
||||||
def run(self) -> None:
|
def run(self) -> None:
|
||||||
self.pre_run_setup()
|
self.pre_run_setup()
|
||||||
self.__train_classification_model()
|
success = self.__train_classification_model()
|
||||||
|
exit(0 if success else 1)
|
||||||
|
|
||||||
def __generate_representative_dataset_factory(self, dataset_dir: str):
|
def __generate_representative_dataset_factory(self, dataset_dir: str):
|
||||||
def generate_representative_dataset():
|
def generate_representative_dataset():
|
||||||
@ -153,17 +154,17 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
@redirect_output_to_logger(logger, logging.DEBUG)
|
@redirect_output_to_logger(logger, logging.DEBUG)
|
||||||
def __train_classification_model(self) -> bool:
|
def __train_classification_model(self) -> bool:
|
||||||
"""Train a classification model."""
|
"""Train a classification model."""
|
||||||
|
try:
|
||||||
# import in the function so that tensorflow is not initialized multiple times
|
# import in the function so that tensorflow is not initialized multiple times
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.keras import layers, models, optimizers
|
from tensorflow.keras import layers, models, optimizers
|
||||||
from tensorflow.keras.applications import MobileNetV2
|
from tensorflow.keras.applications import MobileNetV2
|
||||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||||
|
|
||||||
logger.info(f"Kicking off classification training for {self.model_name}.")
|
|
||||||
dataset_dir = os.path.join(CLIPS_DIR, self.model_name, "dataset")
|
dataset_dir = os.path.join(CLIPS_DIR, self.model_name, "dataset")
|
||||||
model_dir = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
model_dir = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
|
|
||||||
num_classes = len(
|
num_classes = len(
|
||||||
[
|
[
|
||||||
d
|
d
|
||||||
@ -172,6 +173,12 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if num_classes < 2:
|
||||||
|
logger.error(
|
||||||
|
f"Training failed for {self.model_name}: Need at least 2 classes, found {num_classes}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
# Start with imagenet base model with 35% of channels in each layer
|
# Start with imagenet base model with 35% of channels in each layer
|
||||||
base_model = MobileNetV2(
|
base_model = MobileNetV2(
|
||||||
input_shape=(224, 224, 3),
|
input_shape=(224, 224, 3),
|
||||||
@ -207,6 +214,11 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
subset="training",
|
subset="training",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
total_images = train_gen.samples
|
||||||
|
logger.debug(
|
||||||
|
f"Training {self.model_name}: {total_images} images across {num_classes} classes"
|
||||||
|
)
|
||||||
|
|
||||||
# write labelmap
|
# write labelmap
|
||||||
class_indices = train_gen.class_indices
|
class_indices = train_gen.class_indices
|
||||||
index_to_class = {v: k for k, v in class_indices.items()}
|
index_to_class = {v: k for k, v in class_indices.items()}
|
||||||
@ -216,7 +228,9 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
f.write(f"{class_name}\n")
|
f.write(f"{class_name}\n")
|
||||||
|
|
||||||
# train the model
|
# train the model
|
||||||
|
logger.debug(f"Training {self.model_name} for {EPOCHS} epochs...")
|
||||||
model.fit(train_gen, epochs=EPOCHS, verbose=0)
|
model.fit(train_gen, epochs=EPOCHS, verbose=0)
|
||||||
|
logger.debug(f"Converting {self.model_name} to TFLite...")
|
||||||
|
|
||||||
# convert model to tflite
|
# convert model to tflite
|
||||||
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||||||
@ -230,13 +244,28 @@ class ClassificationTrainingProcess(FrigateProcess):
|
|||||||
tflite_model = converter.convert()
|
tflite_model = converter.convert()
|
||||||
|
|
||||||
# write model
|
# write model
|
||||||
with open(os.path.join(model_dir, "model.tflite"), "wb") as f:
|
model_path = os.path.join(model_dir, "model.tflite")
|
||||||
|
with open(model_path, "wb") as f:
|
||||||
f.write(tflite_model)
|
f.write(tflite_model)
|
||||||
|
|
||||||
|
# verify model file was written successfully
|
||||||
|
if not os.path.exists(model_path) or os.path.getsize(model_path) == 0:
|
||||||
|
logger.error(
|
||||||
|
f"Training failed for {self.model_name}: Model file was not created or is empty"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
# write training metadata with image count
|
# write training metadata with image count
|
||||||
dataset_image_count = get_dataset_image_count(self.model_name)
|
dataset_image_count = get_dataset_image_count(self.model_name)
|
||||||
write_training_metadata(self.model_name, dataset_image_count)
|
write_training_metadata(self.model_name, dataset_image_count)
|
||||||
|
|
||||||
|
logger.info(f"Finished training {self.model_name}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Training failed for {self.model_name}: {e}", exc_info=True)
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
def kickoff_model_training(
|
def kickoff_model_training(
|
||||||
embeddingRequestor: EmbeddingsRequestor, model_name: str
|
embeddingRequestor: EmbeddingsRequestor, model_name: str
|
||||||
@ -257,6 +286,10 @@ def kickoff_model_training(
|
|||||||
training_process.start()
|
training_process.start()
|
||||||
training_process.join()
|
training_process.join()
|
||||||
|
|
||||||
|
# check if training succeeded by examining the exit code
|
||||||
|
training_success = training_process.exitcode == 0
|
||||||
|
|
||||||
|
if training_success:
|
||||||
# reload model and mark training as complete
|
# reload model and mark training as complete
|
||||||
embeddingRequestor.send_data(
|
embeddingRequestor.send_data(
|
||||||
EmbeddingsRequestEnum.reload_classification_model.value,
|
EmbeddingsRequestEnum.reload_classification_model.value,
|
||||||
@ -269,6 +302,20 @@ def kickoff_model_training(
|
|||||||
"state": ModelStatusTypesEnum.complete,
|
"state": ModelStatusTypesEnum.complete,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
logger.error(
|
||||||
|
f"Training subprocess failed for {model_name} (exit code: {training_process.exitcode})"
|
||||||
|
)
|
||||||
|
# mark training as complete (not failed) so UI doesn't stay in training state
|
||||||
|
# but don't reload the model since it failed
|
||||||
|
requestor.send_data(
|
||||||
|
UPDATE_MODEL_STATE,
|
||||||
|
{
|
||||||
|
"model": model_name,
|
||||||
|
"state": ModelStatusTypesEnum.complete,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
requestor.stop()
|
requestor.stop()
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user