mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-08 20:25:26 +03:00
detectors/openvino: allow f32 models, use util to process yolov8
This commit is contained in:
parent
cd5f4b1534
commit
5dc83ab2da
@ -7,6 +7,7 @@ from typing_extensions import Literal
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.detectors.util import preprocess, yolov8_postprocess
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -33,7 +34,9 @@ class OvDetector(DetectionApi):
|
||||
model=self.ov_model, device_name=detector_config.device
|
||||
)
|
||||
|
||||
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
|
||||
logger.info(
|
||||
f"Model Input Shape: {self.interpreter.input(0).shape} {self.interpreter.input(0).element_type.to_dtype()}"
|
||||
)
|
||||
self.output_indexes = 0
|
||||
|
||||
while True:
|
||||
@ -80,6 +83,11 @@ class OvDetector(DetectionApi):
|
||||
]
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
tensor_input = preprocess(
|
||||
tensor_input,
|
||||
self.interpreter.inputs[0].shape,
|
||||
self.interpreter.inputs[0].element_type.to_dtype(),
|
||||
)
|
||||
infer_request = self.interpreter.create_infer_request()
|
||||
infer_request.infer([tensor_input])
|
||||
|
||||
@ -132,28 +140,8 @@ class OvDetector(DetectionApi):
|
||||
)
|
||||
return detections
|
||||
elif self.ov_model_type == ModelTypeEnum.yolov8:
|
||||
out_tensor = infer_request.get_output_tensor()
|
||||
results = out_tensor.data[0]
|
||||
output_data = np.transpose(results)
|
||||
scores = np.max(output_data[:, 4:], axis=1)
|
||||
if len(scores) == 0:
|
||||
return np.zeros((20, 6), np.float32)
|
||||
scores = np.expand_dims(scores, axis=1)
|
||||
# add scores to the last column
|
||||
dets = np.concatenate((output_data, scores), axis=1)
|
||||
# filter out lines with scores below threshold
|
||||
dets = dets[dets[:, -1] > 0.5, :]
|
||||
# limit to top 20 scores, descending order
|
||||
ordered = dets[dets[:, -1].argsort()[::-1]][:20]
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, object_detected in enumerate(ordered):
|
||||
detections[i] = self.process_yolo(
|
||||
np.argmax(object_detected[4:-1]),
|
||||
object_detected[-1],
|
||||
object_detected[:4],
|
||||
)
|
||||
return detections
|
||||
out_tensor = infer_request.get_output_tensor().data
|
||||
return yolov8_postprocess(self.interpreter.inputs[0].shape, out_tensor)
|
||||
elif self.ov_model_type == ModelTypeEnum.yolov5:
|
||||
out_tensor = infer_request.get_output_tensor()
|
||||
output_data = out_tensor.data[0]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user