Still create all classes

We stil need to create all classes even if the user didn't assign images to them.
This commit is contained in:
Nicolas Mowen 2025-11-26 08:52:38 -07:00
parent 397d4e5b49
commit 5919b56ffb
3 changed files with 82 additions and 7 deletions

View File

@ -870,6 +870,46 @@ def categorize_classification_image(request: Request, name: str, body: dict = No
)
@router.post(
"/classification/{name}/dataset/{category}/create",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Create an empty classification category folder",
description="""Creates an empty folder for a classification category.
This is used to create folders for categories that don't have images yet.
Returns a success message or an error if the name is invalid.""",
)
def create_classification_category(request: Request, name: str, category: str):
config: FrigateConfig = request.app.frigate_config
if name not in config.classification.custom:
return JSONResponse(
content=(
{
"success": False,
"message": f"{name} is not a known classification model.",
}
),
status_code=404,
)
category_folder = os.path.join(
CLIPS_DIR, sanitize_filename(name), "dataset", sanitize_filename(category)
)
os.makedirs(category_folder, exist_ok=True)
return JSONResponse(
content=(
{
"success": True,
"message": f"Successfully created category folder: {category}",
}
),
status_code=200,
)
@router.post(
"/classification/{name}/train/delete",
response_model=GenericResponse,

View File

@ -166,6 +166,7 @@
"noImages": "No sample images generated",
"classifying": "Classifying & Training...",
"trainingStarted": "Training started successfully",
"modelCreated": "Model created successfully. Use the Recent Classifications view to add images for missing states, then train the model.",
"errors": {
"noCameras": "No cameras configured",
"noObjectLabel": "No object label selected",

View File

@ -141,15 +141,49 @@ export default function Step3ChooseExamples({
);
await Promise.all(categorizePromises);
// Step 3: Kick off training
// Step 2.5: Create empty folders for classes that don't have any images
// This ensures all classes are available in the dataset view later
const classesWithImages = new Set(
Object.values(classifications).filter((c) => c && c !== "none"),
);
const emptyFolderPromises = step1Data.classes
.filter((className) => !classesWithImages.has(className))
.map((className) =>
axios.post(
`/classification/${step1Data.modelName}/dataset/${className}/create`,
),
);
await Promise.all(emptyFolderPromises);
// Step 3: Determine if we should train
// For state models, we need ALL states to have examples
// For object models, we need at least 2 classes with images
const allStatesHaveExamplesForTraining =
step1Data.modelType !== "state" ||
step1Data.classes.every((className) =>
classesWithImages.has(className),
);
const shouldTrain =
allStatesHaveExamplesForTraining && classesWithImages.size >= 2;
// Step 4: Kick off training only if we have enough classes with images
if (shouldTrain) {
await axios.post(`/classification/${step1Data.modelName}/train`);
toast.success(t("wizard.step3.trainingStarted"), {
closeButton: true,
});
setIsTraining(true);
} else {
// Don't train - not all states have examples
toast.success(t("wizard.step3.modelCreated"), {
closeButton: true,
});
setIsTraining(false);
onClose();
}
},
[step1Data, step2Data, t],
[step1Data, step2Data, t, onClose],
);
const handleContinueClassification = useCallback(async () => {