diff --git a/docs/docs/configuration/face_recognition.md b/docs/docs/configuration/face_recognition.md index d14946eaf..f6f9b4a47 100644 --- a/docs/docs/configuration/face_recognition.md +++ b/docs/docs/configuration/face_recognition.md @@ -70,7 +70,7 @@ Fine-tune face recognition with these optional parameters at the global level of - `min_faces`: Min face recognitions for the sub label to be applied to the person object. - Default: `1` - `save_attempts`: Number of images of recognized faces to save for training. - - Default: `100`. + - Default: `200`. - `blur_confidence_filter`: Enables a filter that calculates how blurry the face is and adjusts the confidence based on this. - Default: `True`. - `device`: Target a specific device to run the face recognition model on (multi-GPU installation). diff --git a/docs/docs/configuration/reference.md b/docs/docs/configuration/reference.md index 1ec038dfb..663192c06 100644 --- a/docs/docs/configuration/reference.md +++ b/docs/docs/configuration/reference.md @@ -630,7 +630,7 @@ face_recognition: # Optional: Min face recognitions for the sub label to be applied to the person object (default: shown below) min_faces: 1 # Optional: Number of images of recognized faces to save for training (default: shown below) - save_attempts: 100 + save_attempts: 200 # Optional: Apply a blur quality filter to adjust confidence based on the blur level of the image (default: shown below) blur_confidence_filter: True # Optional: Set the model size used face recognition. (default: shown below) diff --git a/frigate/config/classification.py b/frigate/config/classification.py index 7b12a9ccb..9f7286f8a 100644 --- a/frigate/config/classification.py +++ b/frigate/config/classification.py @@ -197,7 +197,7 @@ class FaceRecognitionConfig(FrigateBaseModel): title="Min face recognitions for the sub label to be applied to the person object.", ) save_attempts: int = Field( - default=100, ge=0, title="Number of face attempts to save in the train tab." + default=200, ge=0, title="Number of face attempts to save in the train tab." ) blur_confidence_filter: bool = Field( default=True, title="Apply blur quality filter to face confidence."