mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-01-22 20:18:30 +03:00
Implement other providers
This commit is contained in:
parent
3acd12bc56
commit
4eeac987b8
@ -306,7 +306,7 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
tool_iterations = 0
|
||||
max_iterations = body.max_tool_iterations
|
||||
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Starting chat completion with {len(conversation)} message(s), "
|
||||
f"{len(tools)} tool(s) available, max_iterations={max_iterations}"
|
||||
)
|
||||
@ -352,7 +352,7 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
|
||||
tool_calls = response.get("tool_calls")
|
||||
if not tool_calls:
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Chat completion finished with final answer (iterations: {tool_iterations})"
|
||||
)
|
||||
return JSONResponse(
|
||||
@ -369,7 +369,7 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
|
||||
# Execute tools
|
||||
tool_iterations += 1
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Tool calls detected (iteration {tool_iterations}/{max_iterations}): "
|
||||
f"{len(tool_calls)} tool(s) to execute"
|
||||
)
|
||||
@ -380,7 +380,7 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
tool_args = tool_call["arguments"]
|
||||
tool_call_id = tool_call["id"]
|
||||
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Executing tool: {tool_name} (id: {tool_call_id}) with arguments: {json.dumps(tool_args, indent=2)}"
|
||||
)
|
||||
|
||||
@ -402,19 +402,19 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
if result_count > 0
|
||||
else [],
|
||||
}
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result: {json.dumps(result_summary, indent=2)}"
|
||||
)
|
||||
elif isinstance(tool_result, str):
|
||||
result_content = tool_result
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result length: {len(result_content)} characters"
|
||||
)
|
||||
else:
|
||||
result_content = str(tool_result)
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) completed successfully. "
|
||||
f"Result type: {type(tool_result).__name__}"
|
||||
)
|
||||
@ -441,16 +441,12 @@ Always be accurate with time calculations based on the current date provided."""
|
||||
"content": error_content,
|
||||
}
|
||||
)
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Tool {tool_name} (id: {tool_call_id}) failed. Error result added to conversation."
|
||||
)
|
||||
|
||||
conversation.extend(tool_results)
|
||||
logger.info(
|
||||
f"Added {len(tool_results)} tool result(s) to conversation. "
|
||||
f"Continuing with next LLM call..."
|
||||
)
|
||||
logger.info(
|
||||
logger.debug(
|
||||
f"Added {len(tool_results)} tool result(s) to conversation. "
|
||||
f"Continuing with next LLM call..."
|
||||
)
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
"""Azure OpenAI Provider for Frigate AI."""
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
|
||||
from openai import AzureOpenAI
|
||||
@ -75,3 +76,93 @@ class OpenAIClient(GenAIClient):
|
||||
def get_context_size(self) -> int:
|
||||
"""Get the context window size for Azure OpenAI."""
|
||||
return 128000
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
try:
|
||||
openai_tool_choice = None
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
openai_tool_choice = "none"
|
||||
elif tool_choice == "auto":
|
||||
openai_tool_choice = "auto"
|
||||
elif tool_choice == "required":
|
||||
openai_tool_choice = "required"
|
||||
|
||||
request_params = {
|
||||
"model": self.genai_config.model,
|
||||
"messages": messages,
|
||||
"timeout": self.timeout,
|
||||
}
|
||||
|
||||
if tools:
|
||||
request_params["tools"] = tools
|
||||
if openai_tool_choice is not None:
|
||||
request_params["tool_choice"] = openai_tool_choice
|
||||
|
||||
result = self.provider.chat.completions.create(**request_params)
|
||||
|
||||
if (
|
||||
result is None
|
||||
or not hasattr(result, "choices")
|
||||
or len(result.choices) == 0
|
||||
):
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
choice = result.choices[0]
|
||||
message = choice.message
|
||||
|
||||
content = message.content.strip() if message.content else None
|
||||
|
||||
tool_calls = None
|
||||
if message.tool_calls:
|
||||
tool_calls = []
|
||||
for tool_call in message.tool_calls:
|
||||
try:
|
||||
arguments = json.loads(tool_call.function.arguments)
|
||||
except (json.JSONDecodeError, AttributeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {tool_call.function.name if hasattr(tool_call.function, 'name') else 'unknown'}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.id if hasattr(tool_call, "id") else "",
|
||||
"name": tool_call.function.name
|
||||
if hasattr(tool_call.function, "name")
|
||||
else "",
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if hasattr(choice, "finish_reason") and choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.warning("Azure OpenAI returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
"""Gemini Provider for Frigate AI."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import google.generativeai as genai
|
||||
from google.api_core.exceptions import GoogleAPICallError
|
||||
@ -58,3 +59,189 @@ class GeminiClient(GenAIClient):
|
||||
"""Get the context window size for Gemini."""
|
||||
# Gemini Pro Vision has a 1M token context window
|
||||
return 1000000
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
try:
|
||||
if tools:
|
||||
function_declarations = []
|
||||
for tool in tools:
|
||||
if tool.get("type") == "function":
|
||||
func_def = tool.get("function", {})
|
||||
function_declarations.append(
|
||||
genai.protos.FunctionDeclaration(
|
||||
name=func_def.get("name"),
|
||||
description=func_def.get("description"),
|
||||
parameters=genai.protos.Schema(
|
||||
type=genai.protos.Type.OBJECT,
|
||||
properties={
|
||||
prop_name: genai.protos.Schema(
|
||||
type=_convert_json_type_to_gemini(
|
||||
prop.get("type")
|
||||
),
|
||||
description=prop.get("description"),
|
||||
)
|
||||
for prop_name, prop in func_def.get(
|
||||
"parameters", {}
|
||||
)
|
||||
.get("properties", {})
|
||||
.items()
|
||||
},
|
||||
required=func_def.get("parameters", {}).get(
|
||||
"required", []
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
tool_config = genai.protos.Tool(
|
||||
function_declarations=function_declarations
|
||||
)
|
||||
|
||||
if tool_choice == "none":
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.NONE
|
||||
)
|
||||
elif tool_choice == "required":
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.ANY
|
||||
)
|
||||
else:
|
||||
function_calling_config = genai.protos.FunctionCallingConfig(
|
||||
mode=genai.protos.FunctionCallingConfig.Mode.AUTO
|
||||
)
|
||||
else:
|
||||
tool_config = None
|
||||
function_calling_config = None
|
||||
|
||||
contents = []
|
||||
for msg in messages:
|
||||
role = msg.get("role")
|
||||
content = msg.get("content", "")
|
||||
|
||||
if role == "system":
|
||||
continue
|
||||
elif role == "user":
|
||||
contents.append({"role": "user", "parts": [content]})
|
||||
elif role == "assistant":
|
||||
parts = [content] if content else []
|
||||
if "tool_calls" in msg:
|
||||
for tc in msg["tool_calls"]:
|
||||
parts.append(
|
||||
genai.protos.FunctionCall(
|
||||
name=tc["function"]["name"],
|
||||
args=json.loads(tc["function"]["arguments"]),
|
||||
)
|
||||
)
|
||||
contents.append({"role": "model", "parts": parts})
|
||||
elif role == "tool":
|
||||
tool_call_id = msg.get("tool_call_id")
|
||||
tool_name = msg.get("name", "")
|
||||
tool_result = (
|
||||
json.loads(content) if isinstance(content, str) else content
|
||||
)
|
||||
contents.append(
|
||||
{
|
||||
"role": "function",
|
||||
"parts": [
|
||||
genai.protos.FunctionResponse(
|
||||
name=tool_name,
|
||||
response=tool_result,
|
||||
)
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
generation_config = genai.types.GenerationConfig(
|
||||
candidate_count=1,
|
||||
)
|
||||
if function_calling_config:
|
||||
generation_config.function_calling_config = function_calling_config
|
||||
|
||||
response = self.provider.generate_content(
|
||||
contents,
|
||||
tools=[tool_config] if tool_config else None,
|
||||
generation_config=generation_config,
|
||||
request_options=genai.types.RequestOptions(timeout=self.timeout),
|
||||
)
|
||||
|
||||
content = None
|
||||
tool_calls = None
|
||||
|
||||
if response.candidates and response.candidates[0].content:
|
||||
parts = response.candidates[0].content.parts
|
||||
text_parts = [p.text for p in parts if hasattr(p, "text") and p.text]
|
||||
if text_parts:
|
||||
content = " ".join(text_parts).strip()
|
||||
|
||||
function_calls = [
|
||||
p.function_call
|
||||
for p in parts
|
||||
if hasattr(p, "function_call") and p.function_call
|
||||
]
|
||||
if function_calls:
|
||||
tool_calls = []
|
||||
for fc in function_calls:
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": f"call_{hash(fc.name)}",
|
||||
"name": fc.name,
|
||||
"arguments": dict(fc.args)
|
||||
if hasattr(fc, "args")
|
||||
else {},
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if response.candidates:
|
||||
finish_reason_map = {
|
||||
genai.types.FinishReason.STOP: "stop",
|
||||
genai.types.FinishReason.MAX_TOKENS: "length",
|
||||
genai.types.FinishReason.SAFETY: "stop",
|
||||
genai.types.FinishReason.RECITATION: "stop",
|
||||
genai.types.FinishReason.OTHER: "error",
|
||||
}
|
||||
finish_reason = finish_reason_map.get(
|
||||
response.candidates[0].finish_reason, "error"
|
||||
)
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except GoogleAPICallError as e:
|
||||
logger.warning("Gemini returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("Unexpected error in Gemini chat_with_tools: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
|
||||
def _convert_json_type_to_gemini(json_type: str) -> genai.protos.Type:
|
||||
type_map = {
|
||||
"string": genai.protos.Type.STRING,
|
||||
"integer": genai.protos.Type.INTEGER,
|
||||
"number": genai.protos.Type.NUMBER,
|
||||
"boolean": genai.protos.Type.BOOLEAN,
|
||||
"array": genai.protos.Type.ARRAY,
|
||||
"object": genai.protos.Type.OBJECT,
|
||||
}
|
||||
return type_map.get(json_type, genai.protos.Type.STRING)
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
"""Ollama Provider for Frigate AI."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
@ -77,3 +78,120 @@ class OllamaClient(GenAIClient):
|
||||
return self.genai_config.provider_options.get("options", {}).get(
|
||||
"num_ctx", 4096
|
||||
)
|
||||
|
||||
def chat_with_tools(
|
||||
self,
|
||||
messages: list[dict[str, Any]],
|
||||
tools: Optional[list[dict[str, Any]]] = None,
|
||||
tool_choice: Optional[str] = "auto",
|
||||
) -> dict[str, Any]:
|
||||
if self.provider is None:
|
||||
logger.warning(
|
||||
"Ollama provider has not been initialized. Check your Ollama configuration."
|
||||
)
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
try:
|
||||
request_messages = []
|
||||
for msg in messages:
|
||||
msg_dict = {
|
||||
"role": msg.get("role"),
|
||||
"content": msg.get("content", ""),
|
||||
}
|
||||
if msg.get("tool_call_id"):
|
||||
msg_dict["tool_call_id"] = msg["tool_call_id"]
|
||||
if msg.get("name"):
|
||||
msg_dict["name"] = msg["name"]
|
||||
if msg.get("tool_calls"):
|
||||
msg_dict["tool_calls"] = msg["tool_calls"]
|
||||
request_messages.append(msg_dict)
|
||||
|
||||
request_params = {
|
||||
"model": self.genai_config.model,
|
||||
"messages": request_messages,
|
||||
}
|
||||
|
||||
if tools:
|
||||
request_params["tools"] = tools
|
||||
if tool_choice:
|
||||
if tool_choice == "none":
|
||||
request_params["tool_choice"] = "none"
|
||||
elif tool_choice == "required":
|
||||
request_params["tool_choice"] = "required"
|
||||
elif tool_choice == "auto":
|
||||
request_params["tool_choice"] = "auto"
|
||||
|
||||
request_params.update(self.provider_options)
|
||||
|
||||
response = self.provider.chat(**request_params)
|
||||
|
||||
if not response or "message" not in response:
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
message = response["message"]
|
||||
content = (
|
||||
message.get("content", "").strip() if message.get("content") else None
|
||||
)
|
||||
|
||||
tool_calls = None
|
||||
if "tool_calls" in message and message["tool_calls"]:
|
||||
tool_calls = []
|
||||
for tool_call in message["tool_calls"]:
|
||||
try:
|
||||
function_data = tool_call.get("function", {})
|
||||
arguments_str = function_data.get("arguments", "{}")
|
||||
arguments = json.loads(arguments_str)
|
||||
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
||||
logger.warning(
|
||||
f"Failed to parse tool call arguments: {e}, "
|
||||
f"tool: {function_data.get('name', 'unknown')}"
|
||||
)
|
||||
arguments = {}
|
||||
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": tool_call.get("id", ""),
|
||||
"name": function_data.get("name", ""),
|
||||
"arguments": arguments,
|
||||
}
|
||||
)
|
||||
|
||||
finish_reason = "error"
|
||||
if "done" in response and response["done"]:
|
||||
if tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
elif tool_calls:
|
||||
finish_reason = "tool_calls"
|
||||
elif content:
|
||||
finish_reason = "stop"
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"tool_calls": tool_calls,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
except (TimeoutException, ResponseError, ConnectionError) as e:
|
||||
logger.warning("Ollama returned an error: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning("Unexpected error in Ollama chat_with_tools: %s", str(e))
|
||||
return {
|
||||
"content": None,
|
||||
"tool_calls": None,
|
||||
"finish_reason": "error",
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user