mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 09:27:06 +03:00
Merge branch 'blakeblackshear:dev' into cleanupconfig
This commit is contained in:
commit
4e532d194c
16
.github/workflows/ci.yml
vendored
16
.github/workflows/ci.yml
vendored
@ -7,7 +7,7 @@ on:
|
||||
- dev
|
||||
- master
|
||||
paths-ignore:
|
||||
- 'docs/**'
|
||||
- "docs/**"
|
||||
|
||||
# only run the latest commit to avoid cache overwrites
|
||||
concurrency:
|
||||
@ -24,6 +24,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -45,6 +47,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -86,6 +90,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -112,6 +118,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -140,6 +148,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -165,6 +175,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -188,6 +200,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
|
||||
24
.github/workflows/dependabot-auto-merge.yaml
vendored
24
.github/workflows/dependabot-auto-merge.yaml
vendored
@ -1,24 +0,0 @@
|
||||
name: dependabot-auto-merge
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
dependabot-auto-merge:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.actor == 'dependabot[bot]'
|
||||
steps:
|
||||
- name: Get Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable auto-merge for Dependabot PRs
|
||||
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
|
||||
run: |
|
||||
gh pr review --approve "$PR_URL"
|
||||
gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{ github.event.pull_request.html_url }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
12
.github/workflows/pull_request.yml
vendored
12
.github/workflows/pull_request.yml
vendored
@ -3,7 +3,7 @@ name: On pull request
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- 'docs/**'
|
||||
- "docs/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.9
|
||||
@ -19,6 +19,8 @@ jobs:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@ -38,6 +40,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@ -52,6 +56,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
@ -67,6 +73,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out the repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
|
||||
uses: actions/setup-python@v5.1.0
|
||||
with:
|
||||
@ -88,6 +96,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
|
||||
9
.github/workflows/release.yml
vendored
9
.github/workflows/release.yml
vendored
@ -11,6 +11,8 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- id: lowercaseRepo
|
||||
uses: ASzc/change-string-case-action@v6
|
||||
with:
|
||||
@ -22,10 +24,13 @@ jobs:
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create tag variables
|
||||
env:
|
||||
TAG: ${{ github.ref_name }}
|
||||
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
|
||||
run: |
|
||||
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
|
||||
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
|
||||
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
|
||||
- name: Tag and push the main image
|
||||
|
||||
5
.github/workflows/stale.yml
vendored
5
.github/workflows/stale.yml
vendored
@ -23,7 +23,9 @@ jobs:
|
||||
exempt-pr-labels: "pinned,security,dependencies"
|
||||
operations-per-run: 120
|
||||
- name: Print outputs
|
||||
run: echo ${{ join(steps.stale.outputs.*, ',') }}
|
||||
env:
|
||||
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
|
||||
run: echo "$STALE_OUTPUT"
|
||||
|
||||
# clean_ghcr:
|
||||
# name: Delete outdated dev container images
|
||||
@ -38,4 +40,3 @@ jobs:
|
||||
# account-type: personal
|
||||
# token: ${{ secrets.GITHUB_TOKEN }}
|
||||
# token-type: github-token
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ title: Using Semantic Search
|
||||
|
||||
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
|
||||
|
||||
Frigate has support for [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create embeddings, which runs locally. Embeddings are then saved to Frigate's database.
|
||||
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally.
|
||||
|
||||
Semantic Search is accessed via the _Explore_ view in the Frigate UI.
|
||||
|
||||
@ -19,7 +19,7 @@ For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
|
||||
|
||||
## Configuration
|
||||
|
||||
Semantic Search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
|
||||
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@ -29,9 +29,9 @@ semantic_search:
|
||||
|
||||
:::tip
|
||||
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again.
|
||||
|
||||
If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
|
||||
:::
|
||||
|
||||
@ -39,9 +39,9 @@ If you are enabling the Search feature for the first time, be advised that Friga
|
||||
|
||||
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
|
||||
|
||||
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
|
||||
Differently weighted CLIP models are available and can be selected by setting the `model_size` config option as `small` or `large`:
|
||||
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`:
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@ -50,7 +50,7 @@ semantic_search:
|
||||
```
|
||||
|
||||
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
|
||||
- Configuring the `small` model employs a quantized version of the model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
|
||||
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
@ -84,7 +84,7 @@ If the correct build is used for your GPU and the `large` model is configured, t
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
1. Semantic Search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and Semantic Search for the best results.
|
||||
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results.
|
||||
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
|
||||
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
|
||||
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".
|
||||
|
||||
@ -21,13 +21,13 @@ from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryPa
|
||||
from frigate.api.defs.request.app_body import AppConfigSetBody
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import CONFIG_DIR
|
||||
from frigate.models import Event, Timeline
|
||||
from frigate.util.builtin import (
|
||||
clean_camera_user_pass,
|
||||
get_tz_modifiers,
|
||||
update_yaml_from_url,
|
||||
)
|
||||
from frigate.util.config import find_config_file
|
||||
from frigate.util.services import (
|
||||
ffprobe_stream,
|
||||
get_nvidia_driver_info,
|
||||
@ -147,13 +147,7 @@ def config(request: Request):
|
||||
|
||||
@router.get("/config/raw")
|
||||
def config_raw():
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
if not os.path.isfile(config_file):
|
||||
return JSONResponse(
|
||||
@ -198,13 +192,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
|
||||
|
||||
# Save the config to file
|
||||
try:
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
with open(config_file, "w") as f:
|
||||
f.write(new_config)
|
||||
@ -253,13 +241,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
|
||||
|
||||
@router.put("/config/set")
|
||||
def config_set(request: Request, body: AppConfigSetBody):
|
||||
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
with open(config_file, "r") as f:
|
||||
old_raw_config = f.read()
|
||||
|
||||
@ -29,6 +29,7 @@ from frigate.util.builtin import (
|
||||
)
|
||||
from frigate.util.config import (
|
||||
StreamInfoRetriever,
|
||||
find_config_file,
|
||||
get_relative_coordinates,
|
||||
migrate_frigate_config,
|
||||
)
|
||||
@ -67,7 +68,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
DEFAULT_CONFIG_FILE = "/config/config.yml"
|
||||
DEFAULT_CONFIG = """
|
||||
mqtt:
|
||||
enabled: False
|
||||
@ -638,16 +638,13 @@ class FrigateConfig(FrigateBaseModel):
|
||||
|
||||
@classmethod
|
||||
def load(cls, **kwargs):
|
||||
config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE)
|
||||
|
||||
if not os.path.isfile(config_path):
|
||||
config_path = config_path.replace("yml", "yaml")
|
||||
config_path = find_config_file()
|
||||
|
||||
# No configuration file found, create one.
|
||||
new_config = False
|
||||
if not os.path.isfile(config_path):
|
||||
logger.info("No config file found, saving default config")
|
||||
config_path = DEFAULT_CONFIG_FILE
|
||||
config_path = config_path
|
||||
new_config = True
|
||||
else:
|
||||
# Check if the config file needs to be migrated.
|
||||
|
||||
@ -136,17 +136,17 @@ class Rknn(DetectionApi):
|
||||
def check_config(self, config):
|
||||
if (config.model.width != 320) or (config.model.height != 320):
|
||||
raise Exception(
|
||||
"Make sure to set the model width and height to 320 in your config.yml."
|
||||
"Make sure to set the model width and height to 320 in your config."
|
||||
)
|
||||
|
||||
if config.model.input_pixel_format != "bgr":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.'
|
||||
)
|
||||
|
||||
if config.model.input_tensor != "nhwc":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.'
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
|
||||
@ -256,8 +256,9 @@ class EventCleanup(threading.Thread):
|
||||
|
||||
events_to_update = []
|
||||
|
||||
for batch in query.iterator():
|
||||
events_to_update.extend([event.id for event in batch])
|
||||
for event in query.iterator():
|
||||
events_to_update.append(event)
|
||||
|
||||
if len(events_to_update) >= CHUNK_SIZE:
|
||||
logger.debug(
|
||||
f"Updating {update_params} for {len(events_to_update)} events"
|
||||
@ -330,9 +331,8 @@ class EventCleanup(threading.Thread):
|
||||
|
||||
def run(self) -> None:
|
||||
# only expire events every 5 minutes
|
||||
while not self.stop_event.wait(1):
|
||||
while not self.stop_event.wait(300):
|
||||
events_with_expired_clips = self.expire_clips()
|
||||
return
|
||||
|
||||
# delete timeline entries for events that have expired recordings
|
||||
# delete up to 100,000 at a time
|
||||
|
||||
@ -82,18 +82,23 @@ class EventProcessor(threading.Thread):
|
||||
)
|
||||
|
||||
if source_type == EventTypeEnum.tracked_object:
|
||||
id = event_data["id"]
|
||||
self.timeline_queue.put(
|
||||
(
|
||||
camera,
|
||||
source_type,
|
||||
event_type,
|
||||
self.events_in_process.get(event_data["id"]),
|
||||
self.events_in_process.get(id),
|
||||
event_data,
|
||||
)
|
||||
)
|
||||
|
||||
if event_type == EventStateEnum.start:
|
||||
self.events_in_process[event_data["id"]] = event_data
|
||||
# if this is the first message, just store it and continue, its not time to insert it in the db
|
||||
if (
|
||||
event_type == EventStateEnum.start
|
||||
or id not in self.events_in_process
|
||||
):
|
||||
self.events_in_process[id] = event_data
|
||||
continue
|
||||
|
||||
self.handle_object_detection(event_type, camera, event_data)
|
||||
@ -123,10 +128,6 @@ class EventProcessor(threading.Thread):
|
||||
"""handle tracked object event updates."""
|
||||
updated_db = False
|
||||
|
||||
# if this is the first message, just store it and continue, its not time to insert it in the db
|
||||
if event_type == EventStateEnum.start:
|
||||
self.events_in_process[event_data["id"]] = event_data
|
||||
|
||||
if should_update_db(self.events_in_process[event_data["id"]], event_data):
|
||||
updated_db = True
|
||||
camera_config = self.config.cameras[camera]
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
@ -29,11 +28,11 @@ from frigate.const import (
|
||||
AUTOTRACKING_ZOOM_EDGE_THRESHOLD,
|
||||
AUTOTRACKING_ZOOM_IN_HYSTERESIS,
|
||||
AUTOTRACKING_ZOOM_OUT_HYSTERESIS,
|
||||
CONFIG_DIR,
|
||||
)
|
||||
from frigate.ptz.onvif import OnvifController
|
||||
from frigate.track.tracked_object import TrackedObject
|
||||
from frigate.util.builtin import update_yaml_file
|
||||
from frigate.util.config import find_config_file
|
||||
from frigate.util.image import SharedMemoryFrameManager, intersection_over_union
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -328,13 +327,7 @@ class PtzAutoTracker:
|
||||
self.autotracker_init[camera] = True
|
||||
|
||||
def _write_config(self, camera):
|
||||
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
logger.debug(
|
||||
f"{camera}: Writing new config with autotracker motion coefficients: {self.config.cameras[camera].onvif.autotracking.movement_weights}"
|
||||
|
||||
@ -14,6 +14,16 @@ from frigate.util.services import get_video_properties
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
CURRENT_CONFIG_VERSION = "0.15-0"
|
||||
DEFAULT_CONFIG_FILE = "/config/config.yml"
|
||||
|
||||
|
||||
def find_config_file() -> str:
|
||||
config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE)
|
||||
|
||||
if not os.path.isfile(config_path):
|
||||
config_path = config_path.replace("yml", "yaml")
|
||||
|
||||
return config_path
|
||||
|
||||
|
||||
def migrate_frigate_config(config_file: str):
|
||||
|
||||
@ -5,6 +5,7 @@ import { usePersistence } from "./use-persistence";
|
||||
export function useOverlayState<S>(
|
||||
key: string,
|
||||
defaultValue: S | undefined = undefined,
|
||||
preserveSearch: boolean = true,
|
||||
): [S | undefined, (value: S, replace?: boolean) => void] {
|
||||
const location = useLocation();
|
||||
const navigate = useNavigate();
|
||||
@ -15,7 +16,7 @@ export function useOverlayState<S>(
|
||||
(value: S, replace: boolean = false) => {
|
||||
const newLocationState = { ...currentLocationState };
|
||||
newLocationState[key] = value;
|
||||
navigate(location.pathname + location.search, {
|
||||
navigate(location.pathname + (preserveSearch ? location.search : ""), {
|
||||
state: newLocationState,
|
||||
replace,
|
||||
});
|
||||
|
||||
@ -39,8 +39,11 @@ export default function Events() {
|
||||
|
||||
const [showReviewed, setShowReviewed] = usePersistence("showReviewed", false);
|
||||
|
||||
const [recording, setRecording] =
|
||||
useOverlayState<RecordingStartingPoint>("recording");
|
||||
const [recording, setRecording] = useOverlayState<RecordingStartingPoint>(
|
||||
"recording",
|
||||
undefined,
|
||||
false,
|
||||
);
|
||||
|
||||
useSearchEffect("id", (reviewId: string) => {
|
||||
axios
|
||||
|
||||
Loading…
Reference in New Issue
Block a user