mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-11 05:35:25 +03:00
remove purge_model_cache option
This commit is contained in:
parent
804afe3980
commit
4a28a3179a
@ -357,9 +357,6 @@ detectors: # required
|
|||||||
# 0 means choose automatically
|
# 0 means choose automatically
|
||||||
# increase for better performance if you have a multicore NPU e.g. set to 3 on rk3588
|
# increase for better performance if you have a multicore NPU e.g. set to 3 on rk3588
|
||||||
num_cores: 0
|
num_cores: 0
|
||||||
# delete old models from config/model_cache/rknn_cache/ folder
|
|
||||||
# set to false to skip, but keep in mind to manually remove unused models
|
|
||||||
purge_model_cache: true
|
|
||||||
|
|
||||||
model: # required
|
model: # required
|
||||||
# name of model (will be automatically downloaded) or path to your own .rknn model file
|
# name of model (will be automatically downloaded) or path to your own .rknn model file
|
||||||
@ -397,5 +394,5 @@ $ cat /sys/kernel/debug/rknpu/load
|
|||||||
:::
|
:::
|
||||||
|
|
||||||
- By default the rknn detector uses the yolonas_s model (`model: path: default-fp16-yolonas_s`). This model comes with the image, so no further steps than those mentioned above are necessary and no download happens.
|
- By default the rknn detector uses the yolonas_s model (`model: path: default-fp16-yolonas_s`). This model comes with the image, so no further steps than those mentioned above are necessary and no download happens.
|
||||||
- The other choices are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`.
|
- The other choices are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
|
||||||
- Finally, you can also provide your own `.rknn` model. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
- Finally, you can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
||||||
|
|||||||
@ -37,14 +37,6 @@ class Rknn(DetectionApi):
|
|||||||
core_mask = 2**config.num_cores - 1
|
core_mask = 2**config.num_cores - 1
|
||||||
soc = self.get_soc()
|
soc = self.get_soc()
|
||||||
|
|
||||||
if config.purge_model_cache:
|
|
||||||
self.purge_model_cache()
|
|
||||||
else:
|
|
||||||
logger.warning(
|
|
||||||
"Purging model chache is disabled. Remember to manually delete unused models from "
|
|
||||||
+ str(model_chache_dir[1:])
|
|
||||||
)
|
|
||||||
|
|
||||||
model_props = self.parse_model_input(config.model.path, soc)
|
model_props = self.parse_model_input(config.model.path, soc)
|
||||||
|
|
||||||
from rknnlite.api import RKNNLite
|
from rknnlite.api import RKNNLite
|
||||||
@ -60,15 +52,6 @@ class Rknn(DetectionApi):
|
|||||||
def __del__(self):
|
def __del__(self):
|
||||||
self.rknn.release()
|
self.rknn.release()
|
||||||
|
|
||||||
def purge_model_cache(self):
|
|
||||||
if os.path.isdir(model_chache_dir):
|
|
||||||
for file in os.listdir(model_chache_dir):
|
|
||||||
if os.path.isfile(file):
|
|
||||||
if file.endswith("-v2.0.0-1.rknn"):
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
os.remove(file)
|
|
||||||
|
|
||||||
def get_soc(self):
|
def get_soc(self):
|
||||||
try:
|
try:
|
||||||
with open("/proc/device-tree/compatible") as file:
|
with open("/proc/device-tree/compatible") as file:
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user