apply changes from review and fix post process bug

This commit is contained in:
MarcA711 2023-11-18 11:47:49 +00:00
parent e0be59b3be
commit 435ca33376
4 changed files with 38 additions and 37 deletions

View File

@ -9,18 +9,6 @@ COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
FROM wget as rk-downloads
RUN wget -qO ffmpeg https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/latest/ffmpeg
RUN wget -qO ffprobe https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/latest/ffprobe
RUN wget -qO librknnrt_rk356x.so https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk356x.so
RUN wget -qO librknnrt_rk3588.so https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk3588.so
RUN wget -qO yolov8n-320x320-rk3562.rknn https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3562/yolov8n-320x320-rk3562.rknn
RUN wget -qO yolov8n-320x320-rk3566.rknn https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3566/yolov8n-320x320-rk3566.rknn
RUN wget -qO yolov8n-320x320-rk3568.rknn https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3568/yolov8n-320x320-rk3568.rknn
RUN wget -qO yolov8n-320x320-rk3588.rknn https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3588/yolov8n-320x320-rk3588.rknn
FROM deps AS rk-deps
ARG TARGETARCH
@ -30,17 +18,15 @@ RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
WORKDIR /opt/frigate/
COPY --from=rootfs / /
COPY --from=rk-downloads /rootfs/librknnrt_rk356x.so /usr/lib/
COPY --from=rk-downloads /rootfs/librknnrt_rk3588.so /usr/lib/
ADD https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk356x.so /usr/lib/
ADD https://github.com/MarcA711/rknpu2/releases/download/v1.5.2/librknnrt_rk3588.so /usr/lib/
COPY --from=rk-downloads /rootfs/yolov8n-320x320-rk3562.rknn /models/
COPY --from=rk-downloads /rootfs/yolov8n-320x320-rk3566.rknn /models/
COPY --from=rk-downloads /rootfs/yolov8n-320x320-rk3568.rknn /models/
COPY --from=rk-downloads /rootfs/yolov8n-320x320-rk3588.rknn /models/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3562/yolov8n-320x320-rk3562.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3566/yolov8n-320x320-rk3566.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3568/yolov8n-320x320-rk3568.rknn /models/rknn/
ADD https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-rk3588/yolov8n-320x320-rk3588.rknn /models/rknn/
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe
COPY --from=rk-downloads /rootfs/ffmpeg /usr/lib/btbn-ffmpeg/bin/
COPY --from=rk-downloads /rootfs/ffprobe /usr/lib/btbn-ffmpeg/bin/
RUN chmod +x /usr/lib/btbn-ffmpeg/bin/ffmpeg
RUN chmod +x /usr/lib/btbn-ffmpeg/bin/ffprobe
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/latest/ffmpeg /usr/lib/btbn-ffmpeg/bin/
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/latest/ffprobe /usr/lib/btbn-ffmpeg/bin/

View File

@ -304,7 +304,7 @@ These SoCs come with a NPU that will highly speed up detection.
### Setup
RKNN support is provided using the `-rk` suffix for the docker image. Moreover, privileged mode must be enabled by adding the `--privileged` flag to your docker run command or `privileged: true` to your `docker-compose.yml` file.
Use a frigate docker image with `-rk` suffix and enable privileged mode by adding the `--privileged` flag to your docker run command or `privileged: true` to your `docker-compose.yml` file.
### Configuration
@ -376,3 +376,16 @@ $ cat /sys/kernel/debug/rknpu/load
model:
path: /config/model_cache/rknn/my-rknn-model.rknn
```
:::tip
When you have a multicore NPU, you can enable all cores to reduce inference times. You should consider activating all cores if you use a larger model like yolov8l. If your NPU has 3 cores (like rk3588/S SoCs), you can enable all 3 using:
```yaml
detectors:
rknn:
type: rknn
core_mask: 0b111
```
:::

View File

@ -103,7 +103,7 @@ Frigate supports SBCs with the following Rockchip SoCs:
- RV1103/RV1106
- RK3562
Using the yolov8n model and an Orange Pi 5 Plus with RK3588 SoC inference speeds vary between 25-40 ms.
Using the yolov8n model and an Orange Pi 5 Plus with RK3588 SoC inference speeds vary between 20 - 25 ms.
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)

View File

@ -24,7 +24,7 @@ DETECTOR_KEY = "rknn"
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"]
yolov8_rknn_models = {
yolov8_suffix = {
"default-yolov8n": "n",
"default-yolov8s": "s",
"default-yolov8m": "m",
@ -32,7 +32,6 @@ yolov8_rknn_models = {
"default-yolov8x": "x",
}
class RknnDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
@ -45,9 +44,7 @@ class Rknn(DetectionApi):
# find out SoC
try:
with open("/proc/device-tree/compatible") as file:
device_string = file.read()
device_string_parts = device_string.split(",")
soc = device_string_parts[-1]
soc = file.read().split(",")[-1].strip('\x00')
except FileNotFoundError:
logger.error("Make sure to run docker in privileged mode.")
raise Exception("Make sure to run docker in privileged mode.")
@ -63,17 +60,22 @@ class Rknn(DetectionApi):
soc, supported_socs
)
)
if "rk356" in soc:
os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so")
elif "rk3588" in soc:
os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so")
self.model_path = config.model.path or "default-yolov8n"
self.core_mask = config.core_mask
self.height = config.model.height
self.width = config.model.width
if self.model_path in yolov8_rknn_models:
if self.model_path in yolov8_suffix:
if self.model_path == "default-yolov8n":
self.model_path = "/models/yolov8n-320x320-{soc}.rknn".format(soc=soc)
self.model_path = "/models/rknn/yolov8n-320x320-{soc}.rknn".format(soc=soc)
else:
model_suffix = yolov8_rknn_models[self.model_path]
model_suffix = yolov8_suffix[self.model_path]
self.model_path = (
"/config/model_cache/rknn/yolov8{suffix}-320x320-{soc}.rknn".format(
suffix=model_suffix, soc=soc
@ -166,10 +168,10 @@ class Rknn(DetectionApi):
boxes = np.transpose(
np.vstack(
(
results[:, 1] - 0.5 * results[:, 3],
results[:, 0] - 0.5 * results[:, 2],
results[:, 3] + 0.5 * results[:, 3],
results[:, 2] + 0.5 * results[:, 2],
(results[:, 1] - 0.5 * results[:, 3]) / self.height,
(results[:, 0] - 0.5 * results[:, 2]) / self.width,
(results[:, 1] + 0.5 * results[:, 3]) / self.height,
(results[:, 0] + 0.5 * results[:, 2]) / self.width,
)
)
)