mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-18 09:04:28 +03:00
Get stats for embeddings inferences
This commit is contained in:
parent
fbcbb6b088
commit
3faadb633d
@ -41,6 +41,7 @@ from frigate.const import (
|
||||
)
|
||||
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
||||
from frigate.embeddings import EmbeddingsContext, manage_embeddings
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.events.audio import AudioProcessor
|
||||
from frigate.events.cleanup import EventCleanup
|
||||
from frigate.events.external import ExternalEventProcessor
|
||||
@ -89,6 +90,9 @@ class FrigateApp:
|
||||
self.detection_shms: list[mp.shared_memory.SharedMemory] = []
|
||||
self.log_queue: Queue = mp.Queue()
|
||||
self.camera_metrics: dict[str, CameraMetrics] = {}
|
||||
self.embeddings_metrics: EmbeddingsMetrics | None = (
|
||||
EmbeddingsMetrics() if config.semantic_search.enabled else None
|
||||
)
|
||||
self.ptz_metrics: dict[str, PTZMetrics] = {}
|
||||
self.processes: dict[str, int] = {}
|
||||
self.embeddings: Optional[EmbeddingsContext] = None
|
||||
@ -235,7 +239,10 @@ class FrigateApp:
|
||||
embedding_process = util.Process(
|
||||
target=manage_embeddings,
|
||||
name="embeddings_manager",
|
||||
args=(self.config,),
|
||||
args=(
|
||||
self.config,
|
||||
self.embeddings_metrics,
|
||||
),
|
||||
)
|
||||
embedding_process.daemon = True
|
||||
self.embedding_process = embedding_process
|
||||
@ -497,7 +504,11 @@ class FrigateApp:
|
||||
self.stats_emitter = StatsEmitter(
|
||||
self.config,
|
||||
stats_init(
|
||||
self.config, self.camera_metrics, self.detectors, self.processes
|
||||
self.config,
|
||||
self.camera_metrics,
|
||||
self.embeddings_metrics,
|
||||
self.detectors,
|
||||
self.processes,
|
||||
),
|
||||
self.stop_event,
|
||||
)
|
||||
|
||||
@ -21,12 +21,13 @@ from frigate.util.builtin import serialize
|
||||
from frigate.util.services import listen
|
||||
|
||||
from .maintainer import EmbeddingMaintainer
|
||||
from .types import EmbeddingsMetrics
|
||||
from .util import ZScoreNormalization
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def manage_embeddings(config: FrigateConfig) -> None:
|
||||
def manage_embeddings(config: FrigateConfig, metrics: EmbeddingsMetrics) -> None:
|
||||
# Only initialize embeddings if semantic search is enabled
|
||||
if not config.semantic_search.enabled:
|
||||
return
|
||||
@ -60,6 +61,7 @@ def manage_embeddings(config: FrigateConfig) -> None:
|
||||
maintainer = EmbeddingMaintainer(
|
||||
db,
|
||||
config,
|
||||
metrics,
|
||||
stop_event,
|
||||
)
|
||||
maintainer.start()
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
"""Maintain embeddings in SQLite-vec."""
|
||||
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
@ -41,6 +42,7 @@ from frigate.util.image import SharedMemoryFrameManager, area, calculate_region
|
||||
from frigate.util.model import FaceClassificationModel
|
||||
|
||||
from .embeddings import Embeddings
|
||||
from .types import EmbeddingsMetrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -54,10 +56,12 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
self,
|
||||
db: SqliteQueueDatabase,
|
||||
config: FrigateConfig,
|
||||
metrics: EmbeddingsMetrics,
|
||||
stop_event: MpEvent,
|
||||
) -> None:
|
||||
super().__init__(name="embeddings_maintainer")
|
||||
self.config = config
|
||||
self.metrics = metrics
|
||||
self.embeddings = Embeddings(config, db)
|
||||
|
||||
# Check if we need to re-index events
|
||||
@ -219,10 +223,22 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
return
|
||||
|
||||
if self.face_recognition_enabled:
|
||||
self._process_face(data, yuv_frame)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
processed = self._process_face(data, yuv_frame)
|
||||
|
||||
if processed:
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.face_rec_fps.value = (
|
||||
self.metrics.face_rec_fps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
if self.lpr_config.enabled:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
self._process_license_plate(data, yuv_frame)
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.alpr_pps.value = (
|
||||
self.metrics.alpr_pps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
# no need to save our own thumbnails if genai is not enabled
|
||||
# or if the object has become stationary
|
||||
@ -402,14 +418,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
return face
|
||||
|
||||
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
|
||||
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> bool:
|
||||
"""Look for faces in image."""
|
||||
id = obj_data["id"]
|
||||
|
||||
# don't run for non person objects
|
||||
if obj_data.get("label") != "person":
|
||||
logger.debug("Not a processing face for non person object.")
|
||||
return
|
||||
return False
|
||||
|
||||
# don't overwrite sub label for objects that have a sub label
|
||||
# that is not a face
|
||||
@ -417,7 +433,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
logger.debug(
|
||||
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
|
||||
)
|
||||
return
|
||||
return False
|
||||
|
||||
face: Optional[dict[str, any]] = None
|
||||
|
||||
@ -426,7 +442,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
person_box = obj_data.get("box")
|
||||
|
||||
if not person_box:
|
||||
return None
|
||||
return False
|
||||
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
||||
left, top, right, bottom = person_box
|
||||
@ -435,7 +451,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
if not face_box:
|
||||
logger.debug("Detected no faces for person object.")
|
||||
return
|
||||
return False
|
||||
|
||||
margin = int((face_box[2] - face_box[0]) * 0.25)
|
||||
face_frame = person[
|
||||
@ -451,7 +467,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
# don't run for object without attributes
|
||||
if not obj_data.get("current_attributes"):
|
||||
logger.debug("No attributes to parse.")
|
||||
return
|
||||
return False
|
||||
|
||||
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
|
||||
for attr in attributes:
|
||||
@ -463,14 +479,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
# no faces detected in this frame
|
||||
if not face:
|
||||
return
|
||||
return False
|
||||
|
||||
face_box = face.get("box")
|
||||
|
||||
# check that face is valid
|
||||
if not face_box or area(face_box) < self.config.face_recognition.min_area:
|
||||
logger.debug(f"Invalid face box {face}")
|
||||
return
|
||||
return False
|
||||
|
||||
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
|
||||
margin = int((face_box[2] - face_box[0]) * 0.25)
|
||||
@ -487,7 +503,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
res = self.face_classifier.classify_face(face_frame)
|
||||
|
||||
if not res:
|
||||
return
|
||||
return False
|
||||
|
||||
sub_label, score = res
|
||||
|
||||
@ -512,13 +528,13 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
logger.debug(
|
||||
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
if id in self.detected_faces and face_score <= self.detected_faces[id]:
|
||||
logger.debug(
|
||||
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
resp = requests.post(
|
||||
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
|
||||
@ -532,6 +548,8 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
if resp.status_code == 200:
|
||||
self.detected_faces[id] = face_score
|
||||
|
||||
return True
|
||||
|
||||
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
|
||||
"""Return the dimensions of the input image as [x, y, width, height]."""
|
||||
height, width = input.shape[:2]
|
||||
|
||||
17
frigate/embeddings/types.py
Normal file
17
frigate/embeddings/types.py
Normal file
@ -0,0 +1,17 @@
|
||||
"""Embeddings types."""
|
||||
|
||||
import multiprocessing as mp
|
||||
from multiprocessing.sharedctypes import Synchronized
|
||||
|
||||
|
||||
class EmbeddingsMetrics:
|
||||
image_embeddings_fps: Synchronized
|
||||
text_embeddings_sps: Synchronized
|
||||
face_rec_fps: Synchronized
|
||||
alpr_pps: Synchronized
|
||||
|
||||
def __init__(self):
|
||||
self.image_embeddings_fps = mp.Value("d", 0.01)
|
||||
self.text_embeddings_sps = mp.Value("d", 0.01)
|
||||
self.face_rec_fps = mp.Value("d", 0.01)
|
||||
self.alpr_pps = mp.Value("d", 0.01)
|
||||
@ -14,6 +14,7 @@ from requests.exceptions import RequestException
|
||||
from frigate.camera import CameraMetrics
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.object_detection import ObjectDetectProcess
|
||||
from frigate.types import StatsTrackingTypes
|
||||
from frigate.util.services import (
|
||||
@ -51,11 +52,13 @@ def get_latest_version(config: FrigateConfig) -> str:
|
||||
def stats_init(
|
||||
config: FrigateConfig,
|
||||
camera_metrics: dict[str, CameraMetrics],
|
||||
embeddings_metrics: EmbeddingsMetrics | None,
|
||||
detectors: dict[str, ObjectDetectProcess],
|
||||
processes: dict[str, int],
|
||||
) -> StatsTrackingTypes:
|
||||
stats_tracking: StatsTrackingTypes = {
|
||||
"camera_metrics": camera_metrics,
|
||||
"embeddings_metrics": embeddings_metrics,
|
||||
"detectors": detectors,
|
||||
"started": int(time.time()),
|
||||
"latest_frigate_version": get_latest_version(config),
|
||||
@ -279,6 +282,27 @@ def stats_snapshot(
|
||||
}
|
||||
stats["detection_fps"] = round(total_detection_fps, 2)
|
||||
|
||||
if config.semantic_search.enabled:
|
||||
embeddings_metrics = stats_tracking["embeddings_metrics"]
|
||||
stats["embeddings"] = {
|
||||
"image_embedding_speed": round(
|
||||
embeddings_metrics.image_embeddings_fps.value * 1000, 2
|
||||
),
|
||||
"text_embedding_speed": round(
|
||||
embeddings_metrics.text_embeddings_sps.value * 1000, 2
|
||||
),
|
||||
}
|
||||
|
||||
if config.face_recognition.enabled:
|
||||
stats["embeddings"]["face_recognition_speed"] = round(
|
||||
embeddings_metrics.face_rec_fps.value * 1000, 2
|
||||
)
|
||||
|
||||
if config.lpr.enabled:
|
||||
stats["embeddings"]["plate_recognition_speed"] = round(
|
||||
embeddings_metrics.alpr_pps.value * 1000, 2
|
||||
)
|
||||
|
||||
get_processing_stats(config, stats, hwaccel_errors)
|
||||
|
||||
stats["service"] = {
|
||||
|
||||
@ -2,11 +2,13 @@ from enum import Enum
|
||||
from typing import TypedDict
|
||||
|
||||
from frigate.camera import CameraMetrics
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.object_detection import ObjectDetectProcess
|
||||
|
||||
|
||||
class StatsTrackingTypes(TypedDict):
|
||||
camera_metrics: dict[str, CameraMetrics]
|
||||
embeddings_metrics: EmbeddingsMetrics | None
|
||||
detectors: dict[str, ObjectDetectProcess]
|
||||
started: int
|
||||
latest_frigate_version: str
|
||||
|
||||
Loading…
Reference in New Issue
Block a user