Move object related functions to util

This commit is contained in:
Nick Mowen 2023-10-17 06:57:37 -06:00
parent b9494b995b
commit 3e9820549c
3 changed files with 179 additions and 173 deletions

View File

@ -6,7 +6,7 @@ from norfair.drawing.color import Palette
from norfair.drawing.drawer import Drawer from norfair.drawing.drawer import Drawer
from frigate.util.image import intersection from frigate.util.image import intersection
from frigate.video import ( from frigate.util.object import (
get_cluster_boundary, get_cluster_boundary,
get_cluster_candidates, get_cluster_candidates,
get_cluster_region, get_cluster_region,

View File

@ -2,6 +2,7 @@
import datetime import datetime
import logging import logging
import math
import cv2 import cv2
import numpy as np import numpy as np
@ -11,7 +12,10 @@ from frigate.config import CameraConfig, ModelConfig
from frigate.detectors.detector_config import PixelFormatEnum from frigate.detectors.detector_config import PixelFormatEnum
from frigate.models import Event, Regions, Timeline from frigate.models import Event, Regions, Timeline
from frigate.util.image import ( from frigate.util.image import (
area,
calculate_region, calculate_region,
intersection,
intersection_over_union,
yuv_region_2_bgr, yuv_region_2_bgr,
yuv_region_2_rgb, yuv_region_2_rgb,
yuv_region_2_yuv, yuv_region_2_yuv,
@ -273,3 +277,171 @@ def create_tensor_input(frame, model_config: ModelConfig, region):
# Expand dimensions since the model expects images to have shape: [1, height, width, 3] # Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0) return np.expand_dims(cropped_frame, axis=0)
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def inside_any(box_a, boxes):
for box in boxes:
# check if box_a is inside of box
if box_inside(box, box_a):
return True
return False
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(
frame_shape, min_region, boxes, region_grid: list[list[dict[str, any]]]
):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_consolidated_object_detections(detected_object_groups):
"""Drop detections that overlap too much"""
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
intersect_box = intersection(current_detection, to_check)
# if 90% of smaller detection is inside of another detection, consolidate
if (
intersect_box is not None
and area(intersect_box) / area(current_detection) > 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(sorted_by_area[current_detection_idx])
return consolidated_detections

View File

@ -1,6 +1,5 @@
import datetime import datetime
import logging import logging
import math
import multiprocessing as mp import multiprocessing as mp
import os import os
import queue import queue
@ -27,16 +26,19 @@ from frigate.util.builtin import EventsPerSecond
from frigate.util.image import ( from frigate.util.image import (
FrameManager, FrameManager,
SharedMemoryFrameManager, SharedMemoryFrameManager,
area,
calculate_region, calculate_region,
draw_box_with_label, draw_box_with_label,
intersection,
intersection_over_union,
) )
from frigate.util.object import ( from frigate.util.object import (
box_inside,
create_tensor_input, create_tensor_input,
get_cluster_candidates,
get_cluster_region,
get_cluster_region_from_grid, get_cluster_region_from_grid,
get_consolidated_object_detections,
get_min_region_size, get_min_region_size,
inside_any,
intersects_any,
is_object_filtered, is_object_filtered,
) )
from frigate.util.services import listen from frigate.util.services import listen
@ -445,53 +447,6 @@ def track_camera(
logger.info(f"{name}: exiting subprocess") logger.info(f"{name}: exiting subprocess")
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def inside_any(box_a, boxes):
for box in boxes:
# check if box_a is inside of box
if box_inside(box, box_a):
return True
return False
def detect( def detect(
detect_config: DetectConfig, detect_config: DetectConfig,
object_detector, object_detector,
@ -536,127 +491,6 @@ def detect(
return detections return detections
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(
frame_shape, min_region, boxes, region_grid: list[list[dict[str, any]]]
):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_consolidated_object_detections(detected_object_groups):
"""Drop detections that overlap too much"""
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
intersect_box = intersection(current_detection, to_check)
# if 90% of smaller detection is inside of another detection, consolidate
if (
intersect_box is not None
and area(intersect_box) / area(current_detection) > 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(sorted_by_area[current_detection_idx])
return consolidated_detections
def process_frames( def process_frames(
camera_name: str, camera_name: str,
frame_queue: mp.Queue, frame_queue: mp.Queue,