Add MetaDetector implementation and configuration schema

This commit is contained in:
Sergey Krashevich 2023-04-26 02:26:54 +03:00
parent 0d16bd0144
commit 3d9b1996f9
No known key found for this signature in database
GPG Key ID: 625171324E7D3856

View File

@ -0,0 +1,108 @@
import logging
import numpy as np
import os
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig, ModelConfig
from frigate.util import deep_merge
from typing import List, Tuple, Dict, Any, Literal
from typing import Union
from typing_extensions import Annotated
from enum import Enum
from pydantic import Field, parse_obj_as
import importlib
import pkgutil
logger = logging.getLogger(__name__)
DETECTOR_KEY = "meta_detector"
DetectorConfig = Annotated[
Union[tuple(BaseDetectorConfig.__subclasses__())],
Field(discriminator="type"),
]
class MetaDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
detectors: Dict[str, DetectorConfig] = Field(
default={"cpu": {"type": "cpu"}},
title="Detector hardware configuration.",
)
max_detections: int = Field(
default=20,
title="Maximum number of detections to return after merging results",
)
class MetaDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, meta_detector_config: MetaDetectorConfig):
self.max_detections = meta_detector_config.max_detections
self.detectors = []
for key, detector in meta_detector_config.detectors.items():
detector_config: DetectorConfig = parse_obj_as(DetectorConfig, detector)
if detector_config.model is None:
detector_config.model = meta_detector_config.model
else:
model = detector_config.model
schema = ModelConfig.schema()["properties"]
if (
model.width != schema["width"]["default"]
or model.height != schema["height"]["default"]
or model.labelmap_path is not None
or model.labelmap is not {}
or model.input_tensor != schema["input_tensor"]["default"]
or model.input_pixel_format
!= schema["input_pixel_format"]["default"]
):
logger.warning(
"Customizing more than a detector model path is unsupported."
)
merged_model = deep_merge(
detector_config.model.dict(exclude_unset=True),
meta_detector_config.model.dict(exclude_unset=True),
)
detector_config.model = ModelConfig.parse_obj(merged_model)
meta_detector_config.detectors[key] = detector_config
self.detectors.append(self.create_detector(detector_config))
def merge_detections(self, detections_list: List[np.ndarray]) -> np.ndarray:
all_detections = np.vstack(detections_list)
sorted_indices = np.argsort(-all_detections[:, 1])
return all_detections[sorted_indices[: self.max_detections]]
def detect_raw(self, tensor_input) -> np.ndarray:
detections_list = [
detector.detect_raw(tensor_input) for detector in self.detectors
]
return self.merge_detections(detections_list)
def create_detector(self, detector_config):
current_module_name = os.path.splitext(os.path.basename(__file__))[0]
modules_folder = os.path.dirname(os.path.abspath(__file__))
module_prefix = __package__ + "."
_included_modules = [module for module in pkgutil.iter_modules([modules_folder], module_prefix) if module.name != current_module_name]
plugin_modules = []
for _, name, _ in _included_modules:
try:
# currently openvino may fail when importing
# on an arm device with 64 KiB page size.
plugin_modules.append(importlib.import_module(name))
except ImportError as e:
logger.error(f"Error importing detector runtime: {e}")
api_types = {det.type_key: det for det in DetectionApi.__subclasses__()}
api = api_types.get(detector_config.type)
if not api:
raise ValueError(detector_config.type)
return api(detector_config)